

Projekt:

2036/2 - 7. September 2020

Auftraggeber:

Stadtverwaltung Rheinfelden (Baden) Stadtbauamt / Stadtplanungs- und Umweltabteilung Kirchplatz 2 79618 Rheinfelden (Baden)

Bearbeitung:

Dipl.-Geogr. Christian Reutter

Das vorliegende Gutachten ersetzt die schalltechnische Untersuchung 2036/1 vom 18.08.2020.

BÜRO STUTTGART

Schloßstraße 56
70176 Stuttgart
Tel: 0711/2184263-0
Fax: 0711/2184263-9
Messstelle nach
§29 BImSchG für Geräusche

B Ü R O F R E I B U R G Engelbergerstraße 19 79106 Freiburg i. Br. Tel: 0761/15429000 Fax: 0761/15429099

BÜRO DORTMUND Ruhrallee 9 44139 Dortmund

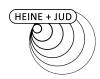
44139 Dortmund Tel: 0231 / 177 408 20 Fax: 0231 / 177 408 29

Email: info@heine-jud.de

THOMAS HEINE · Dipl.-Ing.(FH)

von der IHK Region Stuttgart ö.b.u.v. Sachverständiger für Schallimmissionsschutz

AXEL JUD · Dipl.-Geograph


von der IHK Region Stuttgart ö.b.u.v. Sachverständiger für Schallimmissionen und Schallschutz im Städtebau

Inhaltsverzeichnis

1	Aufgabenstellung	1
2 2.1 2.2	Unterlagen Projektbezogene Unterlagen Gesetze, Normen und Regelwerke	2
3	Beurteilungsgrundlagen	
3.1	Anforderungen der DIN 18005	
3.2	Immissionsrichtwerte der TA Lärm	
3.3	Verkehrsgeräusche – Grenzwerte der 16. BImSchV	8
3.4	Gebietseinstufung und Schutzbedürftigkeit	9
4	Beschreibung der örtlichen Situation	11
4.1	Zwischenlager für Erdaushub	
4.2	Geplanter Feuerwehrbetrieb	
5	Schallschutzmaßnahmen	21
6	Bildung der Beurteilungspegel	22
6.1	Verfahren – TA Lärm	
6.2	Emissionen der maßgeblichen Schallquellen – Zwischenlager	
6.3	Emissionen der maßgeblichen Schallquellen - Feuerwehreinsätze	
6.4	Emissionen der maßgeblichen Schallquellen - Feuerwehrübungen	
6.5	Zusammenfassung der Schallquellen	37
6.6	Spitzenpegel	41
6.7	Vorbelastung	
6.8	Ausbreitungsberechnung	
6.9	Qualität der Prognose	45
7	Ergebnisse und Beurteilung	46
7.1	Zwischenlager und Feuerwehr-Einsätze	
7.2	Zwischenlager und Feuerwehrübungen	47
7.3	Vorbelastung	
7.4	Spitzenpegelbetrachtung	
7.5	Fahrverkehr im öffentlichen Straßenraum	48
8	Zusammenfassung	49
9	Anhang	51

Die Untersuchung enthält 51 Seiten, 38 Anlagen und 4 Karten. Stuttgart, den 7. September 2020

Fachlich Verantwortliche/r Projektbearbeiter/in

Dipl.-Geogr. Axel Jud Dipl.-Geogr. Christian Reutter

1 Aufgabenstellung

Es ist die Aufstellung des Bebauungsplans "Feuerwehr Römerstraße" in Rheinfelden geplant. Innerhalb des Geltungsbereiches sollen Flächen für Gemeinbedarf sowie ein Sondergebiet ausgewiesen werden. Die Flächen für Gemeinbedarf sind für die Ansiedlung von öffentlicher Verwaltung sowie für die Errichtung eines Feuerwehrhauses vorgesehen. Auf dem Sondergebiet im Nordosten des Plangebiets soll ein Zwischenlager für Erdaushub angesiedelt werden.

Im Rahmen des Bebauungsplanverfahrens sind die künftigen Schallimmissionen, die auf die umliegende schutzbedürftige Bebauung einwirken, zu ermitteln und zu beurteilen. Beurteilungsgrundlage sind die DIN 18005^{1,2} sowie die Technische Anleitung zum Schutz gegen Lärm (TA Lärm)³ mit den darin genannten Regelwerken und Richtlinien. Bei Überschreiten der gültigen Orientierungsbzw. Richtwerte sind Schallschutzmaßnahmen zu konzipieren.

Im Einzelnen ergeben sich folgende Arbeitsschritte:


- Erarbeiten eines Rechenmodells anhand von Literaturangaben und Bestimmung der Abstrahlung aller relevanten Schallquellen,
- Ermittlung der Beurteilungspegel an der angrenzenden Bebauung,
- Konzeption von Minderungsmaßnahmen bei Überschreitung der zulässigen Orientierungs-/Richtwerte,
- Darstellung der Situation in Form von Lärmkarten,
- Textfassung und Beschreibung der Ergebnisse.

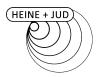
2036/2 - 7. September 2020

¹ DIN 18005-1 Schallschutz im Städtebau - Teil 1: Grundlagen und Hinweise für die Planung. Juli 2002.

² DIN 18005-1 Beiblatt 1 Schallschutz im Städtebau - Berechnungsverfahren; Schalltechnische Orientierung für städtebauliche Planung. Mai 1987.

³ Sechste Allgemeine Verwaltungsvorschrift zum Bundesimmissionsschutz-gesetz (Technische Anleitung zum Schutz gegen Lärm - TA Lärm) vom 26. August 1998 (GMBI Nr. 26/1998 S. 503), zuletzt geändert durch Bekanntmachung des BMUB vom 1. Juni 2017 (BAnz AT 08.06.2017 B5), in Kraft getreten am 9. Juni 2017.

2 Unterlagen


2.1 Projektbezogene Unterlagen

Folgende Unterlagen wurden zur Erstellung dieses Berichts herangezogen:

- Bebauungsplan "S 51 Feuerwehr", Maßstab 1: 1000, Stadt Rheinfelden, Stand: 01.09.2020.
- Bebauungsplan S11-03 "Zwischen der Hardt-, Müßmatt-, Römer- und Unteren Dorfstraße" 3. Änderung, Maßstab 1:1.000, Stadt Rheinfelden, Stand 15.04.2019.
- Neubau Feuerwehr Rheinfelden (Entwurf), Maßstab 1:100, dasch zürn + partner Reinboth Landschaftsarchitekten, Stand: 22.06.2020.
- BV Feuerwehrtechnisches Zentrum Rheinfelden, Grundriss Dachaufsicht Heizung, Lüftung, Sanitär, Klima – Entwurfsplan, Maßstab 1: 50, Ingenieurbüro Wagner GmbH, Reutlingen, Stand: 22.06.2020.
- Prognose der Staubemissionen und immissionen im Rahmen des Genehmigungsverfahrens zur Errichtung und zum Betrieb eines Zwischenlagers für Erdaushub (Entwurf), Projekt-Nr. 19-08-22-FR IMA Richter & Röckle, Stand: 02.09.2020.
- Angaben zur geplanten Auslastung seitens des Auftraggebers.

2.2 Gesetze, Normen und Regelwerke

- Bayerisches Landesamt für Umwelt (2007): Parkplatzlärmstudie, Empfehlungen zur Berechnung von Schallemissionen aus Parkplätzen, Autohöfen und Omnibusbahnhöfen sowie von Parkhäusern und Tiefgaragen 6. überarbeitete Auflage.
- Bayerisches Landesamt für Umweltschutz (2001): Verwendung von akustischen Rückfahrwarneinrichtungen.
- Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz (2017): LAI-Hinweise zur Auslegung der TA Lärm (Fragen und Antworten zur TA Lärm) in der Fassung des Beschlusses zur TOP 9.4 der 133. LAI-Sitzung am 22. und 23. März 2017.
- DIN 18005-1 Beiblatt 1 Schallschutz im Städtebau Berechnungsverfahren;
 Schalltechnische Orientierung für städtebauliche Planung. 1987.
- DIN 18005-1 Schallschutz im Städtebau Teil 1: Grundlagen und Hinweise für die Planung. 2002.
- DIN 45687 Akustik Software-Erzeugnisse zur Berechnung der Geräuschimmissionen im Freien Qualitätsanforderungen und Prüfbestimmungen. 2006.

- DIN EN ISO 12354-4 Bauakustik Berechnung der akustischen Eigenschaften von Gebäuden aus den Bauteileigenschaften Teil 4: Schallübertragung von Räumen ins Freie (ISO 12354-4:2017); Deutsche Fassung EN ISO 12354-4:2017. 2017.
- DIN ISO 9613-2 D\u00e4mpfung des Schalls bei der Ausbreitung im Freien Teil
 2: Allgemeines Berechnungsverfahren (ISO 9613-2: 1996). 1999.
- Job, Ralf; Kurtz, Wilhelm (2002): Technischer Bericht zur Untersuchung der Geräuschemissionen von Anlagen zur Abfallbehandlung und -verwertung sowie Kläranlagen. TÜV-Bericht Nr. 933/423901 bzw. 933/132001. Wiesbaden: HLUG.
- Knothe, Ekkehard; Busche, Hans-Joachim (2000): Leitfaden zur Prognose von Geräuschen bei der Be- und Entladung von Lkw. Geräuschemissionen und -immissionen bei der Be- und Entladung von Containern und Wechselbrücken, Silofahrzeugen, Tankfahrzeugen, Muldenkippern und Müllfahrzeugen an Müllumladestationen.
- Krämer, Erich; Kämpfer, Helmut; Weiser, Karsten (1999): Technischer Bericht Nr. L 4054 zur Untersuchung der Geräuschemissionen und -immissionen von Tankstellen. Wiesbaden: Hessische Landesanst. für Umwelt.
- Krämer, Erich; Leiker, Herbert; Wilms, Ulrich (2004): Technischer Bericht zur Untersuchung der Geräuschemissionen von Baumaschinen. Wiesbaden: HLUG.
- Lenkewitz, Knut; Müller, Jürgen (2005): Technischer Bericht zur Untersuchung der Geräuschemissionen durch Lastkraftwagen auf Betriebsgeländen von Frachtzentren, Auslieferungslagern, Speditionen und Verbrauchermärkten sowie weiterer typischer Geräusche insbesondere von Verbrauchermärkten. Wiesbaden: HLUG.
- Sechste Allgemeine Verwaltungsvorschrift zum Bundesimmissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm TA Lärm) vom 26. August 1998 (GMBI Nr. 26/1998 S. 503), zuletzt geändert durch Bekanntmachung des BMUB vom 1. Juni 2017 (BAnz AT 08.06.2017 B5), in Kraft getreten am 9. Juni 2017.
- Sechzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verkehrslärmschutzverordnung 16. BImSchV) vom 12. Juni 1990 (BGBI. I S. 1036), die durch Artikel 1 der Verordnung vom 18. Dezember 2014 (BGBI. I S. 2269) geändert worden ist.
- VDI 2571 Schallabstrahlung von Industriebauten. 1976.
- VDI 3770 Emissionskennwerte von Schallquellen Sport- und Freizeitanlagen. 2012.

3 Beurteilungsgrundlagen

Zur Beurteilung der Situation werden folgende Regelwerke angewendet:

- Die DIN 18005^{1,2} wird in der Regel im Rahmen eines Bebauungsplanverfahrens angewendet, die darin genannten Orientierungswerte gelten für alle Lärmarten.
- Für Gewerbebetriebe mit allen dazugehörenden Schallimmissionen ist die TA Lärm heranzuziehen. Die TA Lärm³ gilt für Anlagen im Sinne des BIm-SchG. Die TA Lärm ist im Bebauungsplanverfahren zwar nicht bindend, es sollte jedoch im Rahmen der Abwägung geprüft werden, ob deren Anforderungen eingehalten werden können.

Die Richtwerte der TA Lärm entsprechen weitestgehend den Orientierungswerten der DIN 18005. Durch die Berücksichtigung von besonders schutzbedürftigen Stunden (Ruhezeiten) und die Betrachtung der lautesten Nachtstunde, liegen die Anforderungen der der TA Lärm über denen der DIN 18005 und stellt damit die "strengere" Beurteilungsgrundlage dar.

1

¹ DIN 18005-1 Schallschutz im Städtebau - Teil 1: Grundlagen und Hinweise für die Planung. Juli 2002.

² DIN 18005-1 Beiblatt 1 Schallschutz im Städtebau - Berechnungsverfahren; Schalltechnische Orientierung für städtebauliche Planung. Mai 1987.

³ Sechste Allgemeine Verwaltungsvorschrift zum Bundesimmissionsschutz-gesetz (Technische Anleitung zum Schutz gegen Lärm - TA Lärm) vom 26. August 1998 (GMBI Nr. 26/1998 S. 503), zuletzt geändert durch Bekanntmachung des BMUB vom 1. Juni 2017 (BAnz AT 08.06.2017 B5), in Kraft getreten am 9. Juni 2017.

3.1 Anforderungen der DIN 18005

Das Beiblatt 1 der DIN 18005-1 enthält schalltechnische Orientierungswerte für die städtebauliche Planung.

Tabelle 1 – Orientierungswerte der DIN 18005¹

Gebietsnutzung	Orientierungswert in dB(A)	
	tags (6-22 Uhr)	nachts (22-6 Uhr)
Kern-/Gewerbegebiet (MK / GE)	65	55 / 50
Dorf-/Mischgebiete (MD / MI)	60	50 / 45
Besondere Wohngebiete (WB)	60	45 / 40
Allgemeine Wohngebiete (WA)	55	45 / 40
Reine Wohngebiete (WR)	50	40 / 35

Der jeweils niedrigere Nachtwert gilt für Industrie-, Gewerbe- und Freizeitlärm, der höhere für Verkehrslärm.


Nach der DIN 18005² sollen die Beurteilungspegel verschiedener Arten von Schallquellen (Verkehrs-, Sport-, Gewerbe- und Freizeitlärm, etc.) jeweils für sich allein mit den Orientierungswerten verglichen und beurteilt werden. Diese Betrachtungsweise lässt sich mit der verschiedenartigen Geräuschzusammensetzung und der unterschiedlichen Einstellung der Betroffenen zur jeweiligen Lärmquelle begründen.

2036/2 - 7. September 2020

5

¹ DIN 18005-1 Beiblatt 1 Schallschutz im Städtebau - Berechnungsverfahren; Schalltechnische Orientierung für städtebauliche Planung. Mai 1987.

² DIN 18005-1 Schallschutz im Städtebau - Teil 1: Grundlagen und Hinweise für die Planung. Juli 2002.

3.2 Immissionsrichtwerte der TA Lärm

Zur Beurteilung der Schallimmissionen werden die Immissionsrichtwerte der Technischen Anleitung zum Schutz gegen Lärm (TA Lärm)¹ herangezogen. Folgende Immissionsrichtwerte sollen während des regulären Betriebes nicht überschritten werden:

Tabelle 2 – Immissionsrichtwerte der TA Lärm, außerhalb von Gebäuden

Gebietsnutzung	Immissionsrichtwert in dB(A)			
	tags (6-22 Uhr)	lauteste Nachtstunde		
a) Industriegebiete	70	70		
b) Gewerbegebiete	65	50		
c) Urbane Gebiete	63	45		
d) Kern-, Misch-, Dorfgebiete	60	45		
e) Allgemeine Wohngebiete und Kleinsiedlungsgebiete	55	40		
f) Reine Wohngebiete	50	35		
g) Kurgebiete, Krankenhäuser, Pflegeanstalten	45	35		

Es soll vermieden werden, dass kurzzeitige Geräuschspitzen den Tagrichtwert um mehr als 30 dB(A) und den Nachtrichtwert um mehr als 20 dB(A) überschreiten. Innerhalb von Ruhezeiten (werktags 6 bis 7 Uhr und 20 bis 22 Uhr, sonntags 6 bis 9 Uhr, 13 bis 15 Uhr und 20 bis 22 Uhr) ist für die Gebietskategorien e) bis g) ein Zuschlag von 6 dB(A) zum Mittelungspegel in der entsprechenden Teilzeit anzusetzen. Für die Nachtzeit ist die lauteste Stunde zwischen 22 und 6 Uhr maßgeblich.

Die Richtwerte gelten für alle Anlagen/Gewerbebetriebe gemeinsam, d.h. die Vorbelastung durch die ansässigen Betriebe muss berücksichtigt werden. Nach Nr. 3.2.1 der TA Lärm gilt als Irrelevanz-Kriterium für die Vorbelastung eine Unterschreitung des Immissionsrichtwerts um 6 dB(A) durch den Beurteilungspegel der Anlage.

_

Sechste Allgemeine Verwaltungsvorschrift zum Bundesimmissionsschutz-gesetz (Technische Anleitung zum Schutz gegen Lärm - TA Lärm) vom 26. August 1998 (GMBI Nr. 26/1998 S. 503), zuletzt geändert durch Bekanntmachung des BMUB vom 1. Juni 2017 (BAnz AT 08.06.2017 B5), in Kraft getreten am 9. Juni 2017.

Seltene Ereignisse

Bei seltenen Ereignissen an höchstens zehn Tagen oder Nächten eines Kalenderjahres können folgende Richtwerte außerhalb von Gebäuden angesetzt werden (betrifft Gebietskategorien b) bis g)):

- o tags 70 dB(A)
- o nachts 55 dB(A)

Einzelne kurzzeitige Geräuschspitzen sollen die o.g. Richtwerte nicht überschreiten:

- o für Gebietskategorie b) tags um nicht mehr als 25 dB(A) und nachts um nicht mehr als 15 dB(A),
- o für Kategorie c) bis g) tags um nicht mehr als 20 dB(A) und nachts um nicht mehr als 10 dB(A).

3.3 Verkehrsgeräusche – Grenzwerte der 16. BImSchV

Der Zu- und Abfahrtverkehr auf öffentlichen Verkehrsflächen wird gemäß der TA Lärm¹ ebenfalls erfasst. Lärmschutzmaßnahmen organisatorischer Art sind hiernach für Kur-, Wohn- und Mischgebiete vorzusehen, wenn:

- o der Beurteilungspegel der Verkehrsgeräusche um 3 dB(A) erhöht wird,
- keine Vermischung mit dem übrigen Verkehr erfolgt ist und
- o die Grenzwerte der 16. BlmSchV² erstmals oder weitergehend überschritten sind.

Die Bedingungen gelten kumulativ, das heißt, nur wenn alle Bedingungen erfüllt sind, sind organisatorische Lärmschutzmaßnahmen zu ergreifen.³

Tabelle 3 – Immissionsgrenzwerte der 16. BImSchV

Gebietsnutzung	Immissionsgrenzwert in dB(A)	
	tags (6-22 Uhr)	nachts (22-6 Uhr)
Krankenhäuser, Schulen, Kurheime und Altenheime	57	47
Wohngebiete	59	49
Kern-, Dorf- und Mischgebiete	64	54
Gewerbegebiete	69	59

_

¹ Sechste Allgemeine Verwaltungsvorschrift zum Bundesimmissionsschutz-gesetz (Technische Anleitung zum Schutz gegen Lärm - TA Lärm) vom 26. August 1998 (GMBI Nr. 26/1998 S. 503), zuletzt geändert durch Bekanntmachung des BMUB vom 1. Juni 2017 (BAnz AT 08.06.2017 B5), in Kraft getreten am 9. Juni 2017.

² Sechzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verkehrslärmschutzverordnung - 16. BlmSchV) vom 12. Juni 1990 (BGBl. I S. 1036), die durch Artikel 1 der Verordnung vom 18. Dezember 2014 (BGBl. I S. 2269) geändert worden ist.

³ Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz (2017): LAI-Hinweise zur Auslegung der TA Lärm (Fragen und Antworten zur TA Lärm) in der Fassung des Beschlusses zur TOP 9.4 der 133. LAI-Sitzung am 22. und 23. März 2017.

3.4 Gebietseinstufung und Schutzbedürftigkeit

Die Schutzbedürftigkeit eines Gebietes ergibt sich in der Regel aus den Festsetzungen in den Bebauungsplänen. Innerhalb des Geltungsbereichs sind Sonderbauflächen (§1 Abs. 1 Nr. 4 BauNVO) sowie Flächen für den Gemeinbedarf vorgesehen.

Abbildung 1 - Bebauungsplan S51 Feuerwehr¹

Die Bebauung südlich des Plangebiets (siehe Abbildung 2) befindet sich in einem Allgemeinen Wohngebiet (WA). Auch der Bebauung im östlichen Teil der Römerstraße – derzeit handelt es sich noch um ein § 34 Gebiet – ist die Schutzbedürftigkeit entsprechend eines Allgemeinen Wohngebiets (WA) zugrunde zu legen². In der Umgebung westlich des Plangebiets (siehe Abbildung 3) sind Flächen für Gemeinbedarf ausgewiesen.

¹ Bebauungsplan "S 51 Feuerwehr", Maßstab 1: 1000, Stadt Rheinfelden, Stand: 01.09.2020.

² Stadtverwaltung Rheinfelden, email vom 08.07.2020.

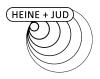
Abbildung 2 - Bebauungsplan "Zwischen der Hardt-, Müßmatt-, Römer- und Unteren Dorfstraße"¹



Abbildung 3 - Bebauungsplan "Äußerer Stadtring Rheinfelden"²

Bebauungsplan S11-03 "Zwischen der Hardt-, Müßmatt-, Römer- und Unteren Dorfstraße" 3. Änderung, Maßstab 1:1.000, Stadt Rheinfelden, Stand 15.04.2019.

² Bebauungsplan "Äußerer Stadtring Rheinfelden", Teilplan 3, Maßstab 1:500, Stadt Rheinfelden, Stand 30.03.1999.



4 Beschreibung der örtlichen Situation

Es ist geplant, auf der Gemeinbedarfsfläche nördlich der Römerstraße bzw. östlich der Müßmattstraße, ein zentrales Gerätehaus für die Feuerwehrabteilungen Rheinfelden, Karsau, Nollingen und Warmbach zu errichten. Im Sondergebiet weiter nordöstlich soll ein Zwischenlager für Erdaushub angesiedelt werden.

4.1 Zwischenlager für Erdaushub

Nordöstlich des zukünftigen Betriebsgrundstücks der Feuerwehr ist ein Zwischenlager für Erdaushub (siehe Abbildung 4) geplant. Im Bereich des Zwischenlagers sollen zukünftig, in dreiseitig geschlossenen und überdachten Boxen, pro Jahr bis rund 25.600 t mineralisches Aushubmaterial gelagert werden. Innerhalb der Betriebszeit zwischen 700 Uhr und 1800 Uhr werden pauschal 20 Lkw berücksichtigt. Das Material wird innerhalb der Boxen abgekippt und mittels Radlader aufgehaldet. Bei der Abholung wird das Material mittels Radlader aufgenommen und in den Lkw abgekippt. Die Fahrgeschwindigkeit der Lkw wird auf 20 km/h beschränkt.

iMA Wohnbaufläche Grünland 50 m Ackerland .agerboxe Fläche für Landwirtschaft

Abbildung 4 - Lage des geplanten Zwischenlagers¹

Die Lage der maßgeblichen Schallquellen und Immissionsorte geht aus der Abbildung 5 hervor.

1

¹ Prognose der Staubemissionen und – immissionen im Rahmen des Genehmigungsverfahrens zur Errichtung und zum Betrieb eines Zwischenlagers für Erdaushub (Entwurf), Projekt-Nr. 19-08-22-FR IMA Richter & Röckle, Stand: 02.09.2020.

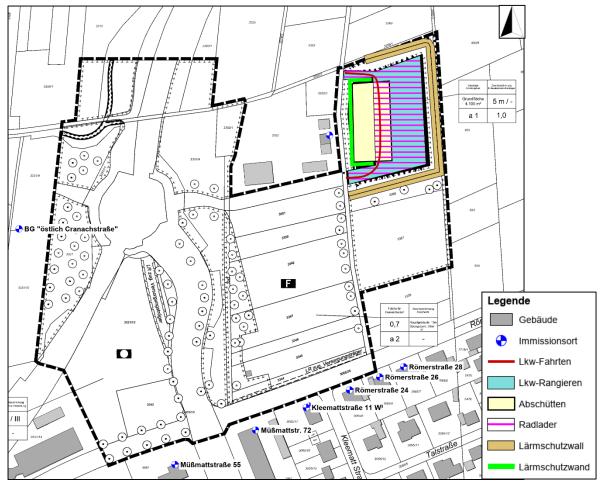
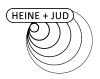




Abbildung 5 – Schallquellen und maßgebliche Immissionsorte – Zwischenlager

4.2 **Geplanter Feuerwehrbetrieb**

Grundlage der schalltechnischen Untersuchung ist der Siegerentwurf¹ des städtebaulichen Wettbewerbs mit Preisgerichtssitzung im Juni 2019.


Das geplante Feuerwehrhaus (siehe Abbildung 6) wird in Form eines rund 115 m langen Gebäuderiegels errichtet. Die Tore der Fahrzeughalle sind an der Westseite des Gebäudes vorgesehen. Die Einsatzfahrzeuge sollen zukünftig über die Einfahrt im Norden ein- und ausrücken.

Abbildung 6 – geplante Anlage

Östlich des Gebäudes sind rund 60 Pkw-Stellplätze geplant. Die Ein- und Ausfahrten von Pkw sollen zukünftig über die Hauptzufahrt im Süden, teils auch über den Norden erfolgen.

¹ Neubau Feuerwehr Rheinfelden (Entwurf), Maßstab 1:100, dasch zürn + partner Reinboth Landschaftsarchitekten, Stand: 22.06.2020.

In der Fahrzeughalle sollen folgende Fahrzeuge untergebracht werden:

- 4 Löschgruppenfahrzeuge,
- o 6 Sonderfahrzeuge (Drehleiter, Rüstwagen, etc.),
- o 2 Trägerfahrzeuge jeweils mit Abrollcontainer
- 3 Mannschaftstransportwagen (MTW)
- 2 Anhänger.

Im Erdgeschoss (siehe Abbildung 7) befinden sich die Fahrzeughalle, eine Werkstatt, eine Waschhalle, die Umkleideräume, Lagerflächen, ein Ausstellungsraum sowie die Einsatzzentrale mit Besprechungsräumen.

Abbildung 7 - Grundriss Erdgeschoss¹

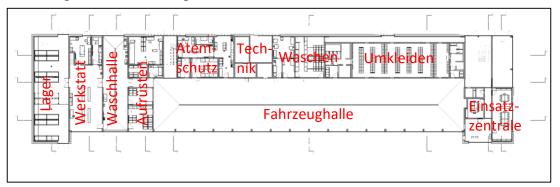



Abbildung 8 - Grundriss Obergeschoss

Im 1. Obergeschoss (siehe Abbildung 8) sind u.a. ein Schulungsraum, ein Fitnessraum mit angrenzender Loggia, Sozialräume sowie Technik und Lagerräume geplant.

Im Südteil weist das geplante Gebäude ein zweites Obergeschoss auf. Hier sollen insbesondere Büros und Sozialräume angesiedelt werden.

2036/2 - 7. September 2020

¹ Neubau Feuerwehr Rheinfelden (Entwurf), Maßstab 1:100, dasch zürn + partner Reinboth Landschaftsarchitekten, Stand: 22.06.2020.

Auf dem Dach sind raumlufttechnische Anlagen, Klimageräte sowie die Ausblasöffnungen der Abgasabsaugung geplant.

Hinsichtlich der Schallemissionen ist zwischen den beiden Szenarien "Einsätze" und "Übungen" zu unterscheiden. Die Feuerwehrübungen werden im Hofbereich westlich des Feuerwehrgebäudes durchgeführt. Nachstehend werden die Schallquellen der einzelnen Szenarien beschrieben.

Feuerwehreinsätze

Die dem Rechenmodell zugrundeliegenden Ansätze basieren auf Angaben seitens des Abteilungskommandanten der Feuerwehr Rheinfelden.¹

Bei einem Einsatz parken die Feuerwehrleute mit bis zu 25 Pkw je Einsatz auf den Stellplätzen östlich des Feuerwehrgebäudes. Die Einsatzkräfte legen ihre Ausrüstung in den Umkleideräumen im Südosten des Gebäudes an, betreten die Fahrzeughalle, steigen in die Einsatzfahrzeuge und rücken aus. In den Berechnungen wird je Einsatz von einem "Löschzugalarm" ausgegangen, bei dem ein Verband aus 3 Lkw (2 Löschfahrzeuge und ein Drehleiterfahrzeug) und einem Einsatzleitwagen (Transporter) ausrückt. Insgesamt werden pauschal, für den mittleren ungünstigen Tag, zwei Einsätze tags (6⁰⁰ Uhr bis 22⁰⁰ Uhr) sowie ein Einsatz in der "lautesten Nachtstunde" berücksichtigt. Im Sinne der "worstcase"-Betrachtung wird angenommen, dass die Einsätze sonntags stattfinden.

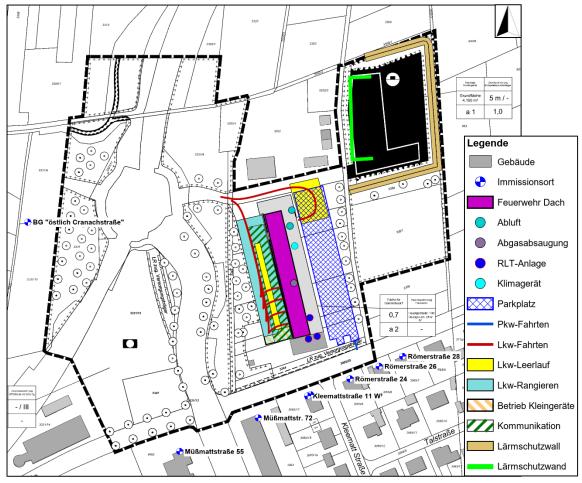
Das Auf- und Abrüsten der Fahrzeuge erfolgt in der Fahrzeughalle. Die Tore sind währenddessen in der Regel geschlossen. Einrückende Einsatzfahrzeuge befahren das Grundstück und rangieren anschließend rückwärts in die Fahrzeughalle. Dabei werden Rückfahrwarneinrichtungen ausschließlich im Tagzeitraum (6⁰⁰ Uhr bis 22⁰⁰ Uhr) betrieben. Die Tore der Fahrzeughalle werden über eine Fernbedienung geöffnet, so dass die Standzeit der Fahrzeuge im Freien minimiert wird. Nach den abschließenden Tätigkeiten (z.B. Wechseln der Kleidung), für die Umkleidekabinen sowie weitere Sozialräume zur Verfügung stehen, verlassen die Feuerwehrleute das Gelände.

Folgende Tätigkeiten sind für die schalltechnische Beurteilung von Bedeutung:

- Schallabstrahlung über die Außenbauteile des Feuerwehrhauses, dabei werden angesetzt:
 - Technische Einrichtungen auf dem Dach (Raumlufttechnik und Klimageräte).
 - Abschließende T\u00e4tigkeiten bzw. Abr\u00fcsten in der Fahrzeughalle \u00fcber 8
 Stunden tags und 30 Minuten in der "lautesten Nachtstunde".

-

¹ Emails der Stadtverwaltung Rheinfelden mit Angaben zur Feuerwehr vom 29.06.2020, 14.07.2020, 20.07.2020, und 23.07.2020.



- Pkw-Verkehr auf den 60 Stellplätzen mit 100 Pkw-Fahrten tags und 25 Fahrten in der "lautesten Nachtstunde".
- Es wird von 2 Einsätzen tags und einem Einsatz in der "lautesten Nachtstunde" ausgegangen. Den Berechnungen liegt ein "Löschzugalarm" zugrunde, bei dem 3 Einsatz-Lkw sowie 1 Fahrzeug der Sprinterklasse ausrücken. Westlich der Fahrzeughalle werden berücksichtigt:
 - Je Einsatzfahrzeug 2 Rangiervorgänge sowie 2 Ausfahrten tags und ein Rangiervorgang beim Einrücken nachts. Die Rangiervorgänge zurück in die Fahrzeughalle beim Einrücken weisen eine Dauer von ca. 30 Sekunden je Fahrzeug auf.
 - Einsatzfahrzeuge im Leerlauf vor der Halle über 1 Minute je einrückendem Lkw tags und 15 Sekunden je Lkw in der "lautesten Nachtstunde".
- Kommunikationsgeräusche über 60 Minuten tags durch 10 Personen im Hofbereich.
- Testläufe von Kleingeräten bzw. Wartungsarbeiten westlich des Feuerwehrgebäudes über 30 Minuten tags.
- Nutzung der Waschhalle tags durch 8 Einsatzfahrzeuge, einschließlich Fahrwege und 15 Minuten Leerlaufgeräusche vor dem Einfahrtsportal. Mit Fahrzeugreinigungen im Zeitraum nachts ist im Regelbetrieb nicht zu rechnen.

Die Lage der Schallquellen und maßgeblichen Immissionsorte ist den Abbildungen 9 und 10 zu entnehmen.

Abbildung 9 – Schallquellen und maßgebliche Immissionsorte – Einsatz tags

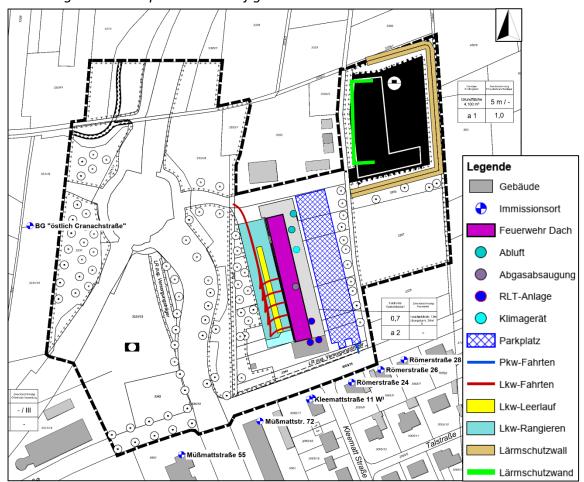
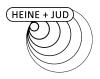
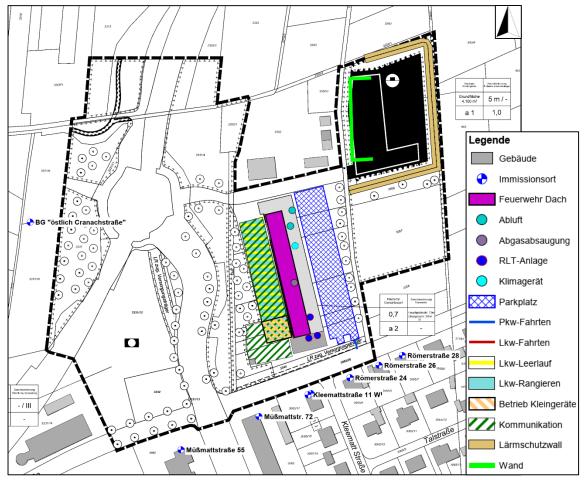



Abbildung 10 – Schallquellen und maßgebliche Immissionsorte – Einsatz nachts

Feuerwehrübungen

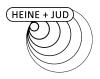
Auf dem Betriebsgelände werden sowohl theoretische Schulungen, als auch praktische Übungen durchgeführt. Praktische Übungen sollen zum Teil auf dem Übungshof im Südwesten des Grundstücks durchgeführt werden. Bei Übungen ist insbesondere mit Schallimmissionen durch die Nutzung eines Feuerwehrfahrzeugs, dem Einsatz von Kleingeräten und Kommunikationsgeräuschen zu rechnen. Hinzu kommt der An- und Abfahrtsverkehr der Übungsteilnehmer auf dem Parkplatz der Feuerwehr. Im Zeitraum nachts (2200 Uhr bis 600 Uhr) werden keine Übungen durchgeführt. Im ungünstigsten Fall erfolgen die Abfahrten nach 2200 Uhr. Folgende Schallquellen sind zu berücksichtigen:


- Pkw-Verkehr auf den 60 Stellplätzen mit 60 Pkw-Fahrten tags (30 An- und 30 Abfahrten).
- Schallabstrahlung über die Außenbauteile des Feuerwehrhauses, dabei werden angesetzt:

- Tätigkeiten in der Fahrzeughalle zwischen 20⁰⁰ Uhr und 22⁰⁰ Uhr
- Nutzung der Werkstatt über 2 Stunden tags.
- Technische Einrichtungen auf dem Dach des geplanten Feuerwehrhauses
- Ein rangierender Lkw mit einer Rangierzeit von 5 Minuten zwischen 20⁰⁰ Uhr und 22⁰⁰ Uhr.
- Leerlaufgeräusche Lkw über 30 Minuten zwischen 20⁰⁰ Uhr und 22⁰⁰ Uhr.
- Die Kommunikationsgeräusche bei Übungen durch 20 ununterbrochen sprechende Personen im Freien zwischen 20⁰⁰ Uhr und 22⁰⁰ Uhr.
- Übungen mit Kleingeräten (Kettensäge, Dieselstromerzeuger o.ä.) mit einer ununterbrochenen Betriebszeit über 1 Stunde während der Übungen.

Die Schallquellen bei Übungen tags sind in der Abbildung 11 dargestellt.

Abbildung 11 – Lage Schallquellen und maßgebliche Immissionsorte - Übungen



5 Schallschutzmaßnahmen

Bereits im Vorfeld wurden Schallschutzmaßnahmen zur Einhaltung der geltenden Immissionsrichtwerte konzipiert, die in den Berechnungen bereits berücksichtigt wurden. Im Folgenden werden diese im Einzelnen aufgeführt.

- Die Hallentore werden über eine Fernbedienung geöffnet, so dass die Standzeit der Fahrzeuge im Freien minimiert wird.
- Beim Einrücken nachts, zwischen 22⁰⁰ Uhr und 6⁰⁰ Uhr, verlassen die Feuerwehrleute die Einsatzfahrzeuge erst in der Fahrzeughalle. Es erfolgt kein Türenschlagen im Hofbereich.
- Das Abrüsten nachts erfolgt in der Fahrzeughalle ausschließlich bei geschlossenen Toren.
- \circ Rückfahrwarneinrichtungen werden im Zeitraum nachts (22 00 Uhr bis 6^{00} Uhr) nicht betrieben.
- Die in Kapitel 6.3.3 aufgeführten anlagenbezogenen Schallleistungspegel für die Anlagen auf dem Dach dürfen nicht überschritten werden. Im Zuge der konkreten Ausführungsplanung ist darauf zu achten, dass technische Anlagen (z.B.: Klima-, Lüftungsanlagen) die Anforderungen der TA Lärm an der umliegenden schutzbedürftigen Bebauung erfüllen.
- Mit Fahrzeugreinigungen im Zeitraum nachts (22⁰⁰ Uhr bis 6⁰⁰ Uhr) ist im Regelbetrieb nicht zu rechnen.
- Feuerwehrsirenen an den Fahrzeugen dürfen erst im öffentlichen Straßenraum in Betrieb genommen werden. Ggf. ist eine Lichtsignalanlage zu installieren, durch die eine sichere Ausfahrt der Einsatzfahrzeuge gewährleistet werden kann.
- o Im Nachtzeitraum (22⁰⁰ bis 6⁰⁰ Uhr) ist Kommunikation im Hofbereich nicht möglich. Ggf. ist dies über Dienstanweisungen sicherzustellen.

6 Bildung der Beurteilungspegel

6.1 Verfahren - TA Lärm

Die Beurteilungspegel wurden nach dem in der TA Lärm¹ beschriebenen Verfahren "detaillierte Prognose" ermittelt. Zur Bestimmung der künftigen Situation wurde ein Rechenmodell auf der Basis von Literaturangaben, Erfahrungswerten sowie Angaben zur Auslastung seitens des Auftraggebers erarbeitet.

Entsprechend den einschlägigen Regelwerken und Verordnungen werden nur die Tätigkeiten auf dem Betriebsgelände betrachtet und den Richtwerten gegenübergestellt. Sobald sich ein Fahrzeug im öffentlichen Straßenraum befindet, unterliegt es einer gesonderten Betrachtung und Beurteilung.

Die Immissionspegel der einzelnen Geräusche werden unter Berücksichtigung der Einwirkdauer sowie besonderer Geräuschmerkmale (Ton- und Impulshaltigkeit) zum Beurteilungspegel zusammengefasst. Die Beurteilungspegel werden nach dem Verfahren der TA Lärm nach folgender Gleichung bestimmt:

$$L_r = 10 \cdot Ig \left[\frac{1}{T_r} \sum_{i=1}^{N} T_j \cdot 10^{0,1(L_{Aeq,j} - C_{met} + K_{T,j} + K_{I,j} + K_{R,j})} \right] dB(A)$$

Mit:

T_r Beurteilungszeitraum, 16 Stunden tags und 1 Stunde nachts

T_i Teilzeit j

N Zahl der gewählten Teilzeiten

L_{Aeq,j} Mittelungspegel während der Teilzeit j

C_{met} meteorologische Korrektur

K_{T,j} Zuschlag für Ton- und Informationshaltigkeit


K_{I,i} Zuschlag für Impulshaltigkeit

K_{R,j} Zuschlag für Tageszeiten mit erhöhter Empfindlichkeit

2036/2 - 7. September 2020

22

¹ Sechste Allgemeine Verwaltungsvorschrift zum Bundesimmissionsschutz-gesetz (Technische Anleitung zum Schutz gegen Lärm - TA Lärm) vom 26. August 1998 (GMBI Nr. 26/1998 S. 503), zuletzt geändert durch Bekanntmachung des BMUB vom 1. Juni 2017 (BAnz AT 08.06.2017 B5), in Kraft getreten am 9. Juni 2017.

6.2 Emissionen der maßgeblichen Schallquellen – Zwischenlager

Grundlage für die Ermittlung der Emission der maßgeblichen Schallquellen sind Erfahrungswerte und Literaturangaben.

6.2.1 Lkw-Verkehr

In den Berechnungen werden 20 Lkw pro Tag in der Zeit zwischen 6^{00} Uhr und 18^{00} Uhr auf dem Betriebsgelände angesetzt. Die Lkw liefern entweder Material an oder transportieren Material ab.

Den Lkw Fahrten auf der Schleife über das Betriebsgelände wird in den Berechnungen ein längenbezogener Schallleistungspegel von 63 dB(A)/m mit 20 Bewegungen innerhalb der Betriebszeit zugrunde gelegt.

Die Rangiervorgänge der Lkw werden im Rechenmodell anhand einer Flächenschallquelle berücksichtigt und entsprechend Tabelle 4 über eine Minute je Lkw angesetzt. Daraus ergibt sich ein anlagenbezogener Schallleistungspegel von 87,4 dB(A) zusammengefasst.

Tabelle 4 – Teilpegel der Rangiervorgänge für 1 Lkw¹

	Anzahl	Einwirkzeit je Ereignis	L _{WA}	Korrektur Einwirkzeit	Teilpegel
		Liciginis	dB(A)	dB(A)	dB(A)
Rangieren Lkw	1	1 min	99	-17,8	81,2
Betriebsbremse	2	5 sek *)	108	-25,6	82,4
Türenschlagen	2	5 sek *)	100	-25,6	74,4
Anlassen	1	5 sek *)	100	-28,6	71,4
Rückfahrwarner	1	30 sek.	104²	-20,8	83,2
Auf die Beurteilungszeit (1 h) bezog. Schallleistungspegel L _{WA,1h} 87,4 dB(A)			_{lh} 87,4 dB(A)		

^{*)} Bezogen auf einen "5-Sekunden-Takt", damit wird von vornherein die Impulshaltigkeit berücksichtigt.

(Schallquellen im Rechenmodell: Zw.-Lager Lkw-Rangieren, Zw.-Lager Lkw-Fahrten)

2036/2 - 7. September 2020

23

¹ Lenkewitz, Knut; Müller, Jürgen (2005): Technischer Bericht zur Untersuchung der Geräuschemissionen durch Lastkraftwagen auf Betriebsgeländen von Frachtzentren, Auslieferungslagern, Speditionen und Verbrauchermärkten sowie weiterer typischer Geräusche insbesondere von Verbrauchermärkten. Wiesbaden: HLUG.

² Bayerisches Landesamt für Umweltschutz (2001): Verwendung von akustischen Rückfahrwarneinrichtungen.

6.2.2 Verladung (Abkippen)

Das Abkippen¹ des Materials von einer Lkw Ladefläche wird mit einem anlagenbezogenen Schallleistungspegel² von 107,0 dB(A) zuzüglich eines Impulszuschlags von 8 dB(A) berücksichtigt. Es werden 20 Abkippvorgänge mit einer Einwirkzeit von jeweils 1 Minute angesetzt.

Tabelle 5 – Schallleistungspegel Abkippen, bezogen auf 1 Vorgang.

	Einwirkzeit je Vorgang	L_{WA}	Korrektur Ein- wirkzeit	Teilpegel
	Vorgung	dB(A)	dB(A)	dB(A)
Abschütten	1 Minute	107*)	-17,8	89,2
Auf die Beurteilungszeit (1 h) bezog. Schallleistungspegel L _{WAT,1h} 89,2 c			_{-WAT,1h} 89,2 dB(A)	

(Schallquelle im Rechenmodell: Zw.-Lager Abkippen)

6.2.3 Verladetätigkeiten - Aufhalden

Das Material wird nach dem Abladen mittels Radlader aufgehaldet. Bei der Materialabholung wird das Material mit dem Radlader in der Box aufgenommen, zum Lkw transportiert und auf den Lkw abgeworfen. Im Rechenmodell wird hierfür ein anlagenbezogener Schallleistungspegel¹ von 107 dB(A) mit einer Einwirkzeit von 10 Stunden tags angesetzt.

Der Rückfahrwarner des Radladers wird mit einem Schallleistungspegel von 104 dB(A)³ und einer Einwirkzeit von insgesamt 5 Stunden berücksichtigt.

(Schallquelle im Rechenmodell: Zw.-Lager Radlader, Zw.-Lager Radlader-RFW)

_

¹ Beim Abtransport des gelagerten Materials, kann im Vergleich zum Anliefern mit geringeren Schallpegeln gerechnet werden.

² Job, Ralf; Kurtz, Wilhelm (2002): Technischer Bericht zur Untersuchung der Geräuschemissionen von Anlagen zur Abfallbehandlung und -verwertung sowie Kläranlagen. TÜV-Bericht Nr. 933/423901 bzw. 933/132001. Wiesbaden: HLUG.; Job, Ralf; Kurtz, Wilhelm (2002): Technischer Bericht zur Untersuchung der Geräuschemissionen von Anlagen zur Abfallbehandlung und -verwertung sowie Kläranlagen. TÜV-Bericht Nr. 933/423901 bzw. 933/132001. Wiesbaden: HLUG.

³ Bayerisches Landesamt für Umweltschutz (2001): Verwendung von akustischen Rückfahrwarneinrichtungen.

6.3 Emissionen der maßgeblichen Schallquellen - Feuerwehreinsätze

6.3.1 Parkplatz

Die Schallleistung auf den Stellplätzen für Pkw wird nach dem Normalfall (sog. zusammengefasstes Verfahren) der Parkplatzlärmstudie¹ wie folgt bestimmt:

$$L_{W''} = L_{W0} + K_{PA} + K_I + K_D + K_{StrO} + 10 \cdot lg (B \cdot N) - 10 \cdot lg (S / 1 m^2)$$
 dB(A)/m²

Mit:	
$L_{W^{\prime\prime}}$	flächenbezogener Schallleistungspegel des Parkplatzes
L _{W0}	Ausgangsschallpegel, eine Bewegung je Stellplatz und Stunde L_{W0} = 63 dB(A)
K_{PA}	Zuschlag für die Parkplatzart, hier: Besucher- und Mitarbeiterpark- plätze +0 dB(A)
K_{l}	Zuschlag für die Impulshaltigkeit, hier jeweils +4 dB(A)
K_{D}	Zuschlag für den Durchfahranteil, hier +4,3 dB(A)
K _{StrO}	Zuschlag für die Fahrbahnoberfläche, hier 0 dB(A) (Fahrgassen: Asphalt)
В	Bezugsgröße, hier 60 Stellplätze
N	Bewegungshäufigkeit, hier 0,1 Bewegungen je Stellplatz und Stunde tags (100 Bewegungen) und 0,4 Bewegungen in der "lautesten Nachtstunde"
S	Gesamtfläche

Der in den Anlagen dargestellte Schallleistungspegel für den Parkplatz bezieht sich auf den gesamten Parkplatz bei einer Bewegung je Stellplatz und Stunde.

(Schallquelle im Rechenmodell: Parkplatz Einsätze)

-

¹ Bayerisches Landesamt für Umwelt (2007): Parkplatzlärmstudie, Empfehlungen zur Berechnung von Schallemissionen aus Parkplätzen, Autohöfen und Omnibusbahnhöfen sowie von Parkhäusern und Tiefgaragen - 6. überarbeitete Auflage.

6.3.2 Betriebsgebäude

Maßgebliche Geräusche aus dem Betriebsgebäude sind aus der Fahrzeughalle sowie aus den Bereichen Waschhalle und Werkstatt zu erwarten.

Fahrzeughalle

In den Fahrzeughallen wird pauschal ein mittlerer Hallen-Innenpegel von 75 dB(A)¹, inklusive Zuschläge für impulshaltige Geräusche, berücksichtigt. Die Vorgänge und Tätigkeiten in der Halle werden mit einer Einwirkzeit von 8 Stunden tags bzw. 30 Minuten in der "lautesten Nachtstunde" berücksichtigt.

Werkstatt

Zur Berücksichtigung der Schallabstrahlung aus dem Bereich der Werkstatt wird am Tor ein mittlerer Innenpegel L_I von 80 dB(A)², inklusive Zuschläge für impulshaltige Geräusche, angesetzt. Den Tätigkeiten im Halleninnern wird im Szenario "Einsätze" eine Einwirkzeit von 2 Stunden pro Tag zugrunde gelegt. Nachts erfolgt keine Nutzung.

Waschhalle

In der Waschhalle wird der Betrieb eines Hochdruckreinigers mit einem anlagenbezogenen Schallleistungspegel von 93,6 dB(A)³ berücksichtigt. Im Regelbetrieb erfolgt nachts keine Nutzung. Aus dem Schallleistungspegel lässt sich nach VDI 2571⁴ der Innenpegel wie folgt berechnen:

$$L_{I} = L_{W} + 14 + 10 \cdot Ig(T/V)$$

Mit:

L_I Pegel im Innern

L_W Schallleistungspegel

T Nachhallzeit T = 0.16 V/A, hier ca. 2 s

V Volumen, hier ca.: 600 m³

2036/2 - 7. September 2020

¹ Erfahrungswert

² Erfahrungswert

³ Krämer, Erich; Kämpfer, Helmut; Weiser, Karsten (1999): Technischer Bericht Nr. L 4054 zur Untersuchung der Geräuschemissionen und -immissionen von Tankstellen. Wiesbaden: Hessische Landesanst. für Umwelt.

⁴ VDI 2571 Schallabstrahlung von Industriebauten. August 1976.

In der Waschhalle wird der berechnete Innenpegel von rund 83 dB(A) zuzüglich Tonzuschlag von 3 dB(A) angesetzt. Den Vorgängen und Tätigkeiten in der Waschhalle wird eine Einwirkzeit von 4 Stunden tags unterstellt.

Schallabstrahlung über die Außenbauteile

Nach Anhang A.2.3.3 der TA Lärm¹ ist für die Ermittlung der Schallabstrahlung über die Außenbauteile die VDI 2571² heranzuziehen, diese wurde jedoch im Oktober 2006 zurückgezogen. Aus diesem Grund wurde die Schallabstrahlung der Außenbauteile anhand der DIN EN 12354-4³ ermittelt.

Die anlagenbezogenen Schallleistungspegel der einzelnen Bauteile berechnen sich frequenzabhängig nach:

$$L_{WA} = L_{p,in} - C_d - R' + 10 \lg (S/S_0)$$
 dB(A)

Mit:

L_{WA} anlagenbezogener Schallleistungspegel des Außenbauteils

L_{p,in} Schalldruckpegel im Abstand von 1 bis 2 m vor dem Bauteil Innen

C_d Diffusitätsterm, hier 6 dB:

- Relativ kleine, gleichförmige Räume (diffuses Feld) vor reflektierender Oberfläche 6 dB
- Relativ kleine, gleichförmige Räume (diffuses Feld) vor absorbierender Oberfläche 3 dB
- Große, flache oder lange Hallen, viele Schallquellen (durchschnittliches Industriegebäude) vor reflektierender Oberfläche
 5 dR
- Industriegebäude, wenige dominierende und gerichtet abstrahlende Schallquellen vor reflektierender Oberfläche 3 dB
- Industriegebäude, wenige dominierende und gerichtet abstrahlende Schallquellen vor absorbierender Oberfläche 0 dB

R' Schalldämm-Maß des betrachteten Bauteils

2036/2 - 7. September 2020

¹ Sechste Allgemeine Verwaltungsvorschrift zum Bundesimmissionsschutz-gesetz (Technische Anleitung zum Schutz gegen Lärm - TA Lärm) vom 26. August 1998 (GMBI Nr. 26/1998 S. 503), zuletzt geändert durch Bekanntmachung des BMUB vom 1. Juni 2017 (BAnz AT 08.06.2017 B5), in Kraft getreten am 9. Juni 2017.

² VDI 2571 Schallabstrahlung von Industriebauten. August 1976.

³ DIN EN ISO 12354-4 Bauakustik – Berechnung der akustischen Eigenschaften von Gebäuden aus den Bauteileigenschaften – Teil 4: Schallübertragung von Räumen ins Freie (ISO 12354-4:2017); Deutsche Fassung EN ISO 12354-4:2017. November 2017.

 S/S_0 Fläche des betrachteten Bauteils, Bezugsgröße $S_0 = 1m^2$

Die Außenbauteile werden mit folgenden Schalldämm-Maßen berücksichtigt:

Oberlichter Rw = 21 dBFahrzeughalle (Tore geschlossen) Rw = 15 dBDach Rw = 35 dBÖffnungsflächen (Tore geöffnet) Rw = 0 dB

(Schallquelle im Rechenmodell: Fahrzeughalle Tore tags/nachts, Fahrzeughalle Oberlicht 1-5, Fahrzeughalle Dach, Waschhalle Tor Ost/West, Werkstatt)

6.3.3 Technische Einrichtungen

Auf dem Dach des geplanten Feuerwehrhauses werden technische Einrichtungen ununterbrochen über 24 Stunden mit folgenden anlagenbezogenen Schallleistungspegeln berücksichtigt:

Ausblasöffnung Abgasabsaugung: 80 dB(A)¹
 Deflektorhaube Abluft 1: 75 dB(A)²
 Deflektorhaube Abluft 2: 75 dB(A)²
 Klimaaußengerät: 58 dB(A)²
 RLT-Anlage 4: 75 dB(A)¹
 RLT-Anlage 6: 75 dB(A)¹
 Wärmepumpe 60 dB(A)²

(Schallquelle im Rechenmodell: Ausblasöffnung Abgasabsaugung, Deflektorhaube Abluft 1 bzw. 2, Klimaaußengerät, RLT-Anlage 4 bzw. 6, Wärmepumpe)

nitär, Klima – Entwurfsplan, Maßstab 1: 50, Ingenieurbüro Wagner GmbH, Reutlingen, Stand:

22.06.2020.

¹ Erfahrungswert von vergleichbaren Anlagen.

² BV Feuerwehrtechnisches Zentrum Rheinfelden, Grundriss Dachaufsicht Heizung, Lüftung, Sa-

6.3.4 Einsatzfahrzeuge

Bei Einsätzen ist im Hofbereich mit Fahrbewegungen und Rangiertätigkeiten durch Lkw zu rechnen.

Lkw Fahrten

Für die Zu- und Abfahrt der Lkw wurde in den Berechnungen jeweils ein längenbezogener Schallleistungspegel von 63 dB(A)/m¹ mit 4 Bewegungen je Fahrzeug (Ausrücken und Einrücken) des Löschzugs tags und 1 Bewegungen je Fahrzeug im Löschzug innerhalb der lautesten Nachtstunde zugrunde gelegt. Die Fahrten werden westlich der Fahrzeughalle angesetzt. Tags werden zusätzlich die Fahrten zur Waschhalle durch 6 Lkw tags berücksichtigt.

(Schallquellen im Rechenmodell: Lkw Fahrten 1-3, Lkw Fahrten Waschhalle)

Lkw Rangieren

Tags setzt sich der Lkw-Rangiervorgang bei Einsätzen aus mehreren Einzelereignissen wie Rangieren, Betriebsbremsen, Türenschlagen, Anlassen sowie dem Einsatz von akustischen Rückfahrwarneinrichtungen zusammen (vgl. Tabelle 6). Die unter Berücksichtigung der jeweiligen Anzahl und Einwirkzeit der Ereignisse ermittelten Teilpegel wurden im Rechenmodell zu einer Flächenschallquelle zusammengefasst. Der anlagenbezogene Schallleistungspegel beträgt 85,9 dB(A). Je Fahrzeug werden den Berechnungen 2 Rangiervorgänge tags und 1 Rangiervorgang in der "lautesten Nachtstunde" zugrunde gelegt.

Gegenüber den Rangiervorgänge nachts sind organisatorische Schallschutzmaßnahmen vorzusehen (siehe Kapitel 5). Rückfahrwarneinrichtungen werden nachts nicht betrieben, der Einsatz der Betriebsbremse, Türenschlagen und Anlassen finden ausschließlich in der Halle statt.

Das Rangieren der Einsatzfahrzeuge beim Einrücken nachts wird mit einem anlagenbezogenen Schallleistungspegel von 99 dB(A) und einer Einwirkzeit von 30 Sekunden je Fahrzeug berücksichtigt. Daraus ergibt sich ein auf die Beurteilungszeit (1 Std.) bezog. Schallleistungspegel von 78,2 dB(A). Es finden drei Rangiervorgänge in der lautesten Nachtstunde statt.

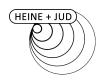
-

¹ Lenkewitz, Knut; Müller, Jürgen (2005): Technischer Bericht zur Untersuchung der Geräuschemissionen durch Lastkraftwagen auf Betriebsgeländen von Frachtzentren, Auslieferungslagern, Speditionen und Verbrauchermärkten sowie weiterer typischer Geräusche insbesondere von Verbrauchermärkten. Wiesbaden: HLUG.

Tabelle 6 – Teilpegel der Rangiervorgänge für 1 Lkw¹

	Anzahl	Einwirkzeit je Ereignis	L _{WA}	Korrektur Einwirkzeit	Teilpegel
		s.gs	dB(A)	dB(A)	dB(A)
Rangieren Lkw	1	30 Sek.	99	-20,8	78,2
Betriebsbremse	2	5 Sek. *	108	-25,6	82,4
Türenschlagen	2	5 Sek. *	100	-25,6	74,4
Anlassen	1	5 Sek. *	100	-28,6	71,4
Rückfahrwarner	1	15 Sek	104¹	-20,8	80,2
Auf die Beurteilungszeit (1 Std.) bezog. Schallleistungspegel L _{WA,1h} 85,9 dB(A)					

^{*} Bezogen auf einen "5-Sekunden-Takt", damit wird von vornherein die Impulshaltigkeit berücksichtigt.


Lkw Leerlaufgeräusche

Leerlaufgeräusche sind beim Einrücken westlich der Fahrzeughalle sowie östlich der Fahrzeughalle zu berücksichtigen. Die Leerlaufgeräusche werden anhand eines anlagenbezogenen Schallleistungspegels von 94 dB(A)² berücksichtigt. Es wird davon ausgegangen, dass tags Feuerwehrleute bereits vor der Einfahrt in die Fahrzeughalle aussteigen. Den Berechnungen werden Einwirkzeiten von insgesamt 6 Minuten tags (1 Minute je Fahrzeug) und 1 Minute (15 Sekunden je Fahrzeug) in der lautesten Nachtstunde zugrunde gelegt. Im Wartebereich östlich der Waschhalle werden Leerlaufgeräusche über insgesamt 15 Minuten tags angesetzt.

(Schallquellen im Rechenmodell: Lkw Rangieren Einsatz tags / nachts, Einsatzfahrzeuge Leerlauf, Einsatzfahrzeuge Leerlauf Ost)

¹ Bayerisches Landesamt für Umweltschutz (2001): Verwendung von akustischen Rückfahrwarneinrichtungen.

² Knothe, Ekkehard; Busche, Hans-Joachim (2000): Leitfaden zur Prognose von Geräuschen bei der Be- und Entladung von Lkw. Geräuschemissionen und -immissionen bei der Be- und Entladung von Containern und Wechselbrücken, Silofahrzeugen, Tankfahrzeugen, Muldenkippern und Müllfahrzeugen an Müllumladestationen.

Transporter Fahrten und Rangieren

Bei Einsätzen rückt neben den Einsatz-Lkw auch ein Mannschaftstransportwagen (Sprinter-Klasse) aus. Die Zu- und Abfahrt des Transporters wird in den Berechnungen jeweils mit einem längenbezogenen Schallleistungspegel¹ von 53 dB(A)/m mit 4 Bewegungen tags (2 Einsätze) und einer Bewegung in der "lautesten Nachtstunde" zugrunde gelegt. Tags werden östlich der Waschhalle die Anfahrten von 2 Transportern berücksichtigt.

Der Rangiervorgang des Transporters wird im Rechenmodell anhand eines anlagenbezogenen Schallleistungspegel von 89 dB(A) und einer Einwirkzeit von 30 Sekunden berücksichtigt. Daraus ergibt sich ein auf die Beurteilungszeit (1 Stunde) bezog. Schallleistungspegel von 68,2 dB(A).

(Schallquelle im Rechenmodell: Transporter Rangieren, Transporter Fahrten, Transporter Fahrten Waschhalle)

6.3.5 Kommunikation im Freien

Im Freien ist tags mit Kommunikationsgeräuschen zu rechnen. Die Kommunikationsgeräusche wurden nach dem Verfahren der VDI 3770² nach folgender Formel ermittelt:

$$L_{WA} = L_{WAeq, Person} + 10 \cdot Ig(n) + \Delta L_I$$
 dB(A)

Mit:

LwAeq, Person "Bereichs-charakteristischer" anlagenbezogener Schallleistungspegel für 1 Person; hier: 70 dB(A)

n Anzahl der Personen; hier: 10 Personen sprechend³ über 1 Stunde

tags

 ΔL_{l} Zuschlag für die Impulshaltigkeit, $\Delta L_{l} = 9.5 - 4.5 \cdot lg$ (n)

2036/2 - 7. September 2020

¹ Erfahrungsgemäß liegen die Schallemissionen von Transportern rund 10 dB(A) unter denen von Lkw.

² VDI 3770 - Emissionskennwerte von Schallquellen Sport- und Freizeitanlagen. September 2012.

³ Gemäß VDI 3770 werden 50 % der anwesenden Personen als gleichzeitig "sprechend" angesetzt.

Für die Kommunikationsgeräusche tags durch 20 Feuerwehrleute ergibt sich gemäß dem Verfahren der VDI 3770 ein anlagenbezogener Schalleistungspegel von 80,0 dB(A) zuzüglich eines Zuschlags für die Impulshaltigkeit von 5,0 dB. Im Zeitraum nachts treten im Freien keine Kommunikationsgeräusche auf.

(Schallquelle im Rechenmodell: Kommunikation tags)

6.3.6 Funktionstests Kleingeräten

Im Sinne einer "worst-case-Betrachtung" werden Funktionstests von Kleingeräten (Kettensäge, Dieselstromerzeuger o.ä.) über 30 Minuten tags berücksichtigt. Den Berechnungen wird ein anlagenbezogener Schallleistungspegel von 100 dB(A) zuzüglich eines Tonhaltigkeitszuschlags von 6 dB(A)¹ zugrunde gelegt.

(Schallquelle im Rechenmodell: Funktionstest Kleingeräte)

_

¹ Erfahrungswert

6.4 Emissionen der maßgeblichen Schallquellen - Feuerwehrübungen

6.4.1 Parkplatz

Die Schallleistung auf den Stellplätzen für Pkw wird nach dem Normalfall (sog. zusammengefasstes Verfahren) der Parkplatzlärmstudie¹ wie folgt bestimmt:

$$L_{W''} = L_{W0} + K_{PA} + K_{I} + K_{D} + K_{StrO} + 10 \cdot lg (B \cdot N) - 10 \cdot lg (S / 1 m^{2})$$
 $dB(A)/m^{2}$

Mit:	
Lw"	flächenbezogener Schallleistungspegel des Parkplatzes
Lwo	Ausgangsschallpegel, eine Bewegung je Stellplatz und Stunde L_{W0} = 63 dB(A)
K _{PA}	Zuschlag für die Parkplatzart, hier: Besucher- und Mitarbeiterpark- plätze +0 dB(A)
Kı	Zuschlag für die Impulshaltigkeit, hier jeweils +4 dB(A)
K_D	Zuschlag für den Durchfahranteil, hier +4,3 dB(A)
K _{StrO}	Zuschlag für die Fahrbahnoberfläche, hier 0 dB(A) (Fahrgassen: Asphalt)
В	Bezugsgröße, hier 60 Stellplätze
N	Bewegungshäufigkeit, hier je 0,5 Bewegungen je Stellplatz zwischen 19^{00} Uhr und 20^{00} Uhr sowie zwischen 22^{00} Uhr und 23^{00} Uhr (insgesamt je 30 An- und Abfahrten).

Der in den Anlagen dargestellte Schallleistungspegel für den Parkplatz bezieht sich auf den gesamten Parkplatz bei einer Bewegung je Stellplatz und Stunde.

(Schallquelle im Rechenmodell: Parkplatz Übungen)

Gesamtfläche

-

S

¹ Bayerisches Landesamt für Umwelt (2007): Parkplatzlärmstudie, Empfehlungen zur Berechnung von Schallemissionen aus Parkplätzen, Autohöfen und Omnibusbahnhöfen sowie von Parkhäusern und Tiefgaragen - 6. überarbeitete Auflage.

6.4.2 Fahrzeughalle mit technischen Einrichtungen

Bei Übungen ist mit Vorgängen und Tätigkeiten in der Fahrzeughalle zu rechnen. In dem Gebäude wird pauschal ein mittlerer Hallen-Innenpegel von 75 dB(A)¹, inklusive Zuschläge für impulshaltige Geräusche, berücksichtigt. Den Berechnungen wird eine ununterbrochene Einwirkzeit zwischen 20⁰⁰ Uhr und 22⁰⁰ Uhr zugrunde gelegt. Die Berechnungen erfolgen entsprechend den Ausführungen in Kapitel 6.3.2.

Die Werkstattnutzung bei Übungen wird entsprechend Kapitel 6.3.2 über 2 Stunden tags angesetzt.

Die technischen Einrichtungen auf dem Dach des geplanten Feuerwehrhauses werden entsprechend Kapitel 6.3.3 ununterbrochen über 24 Stunden berücksichtigt.

(Schallquelle im Rechenmodell: Fahrzeughalle Tore tags, Fahrzeughalle Oberlicht 1-5, Fahrzeughalle Dach, Werkstatt Übungen, Ausblasöffnung Abgasabsaugung, Deflektorhaube Abluft 1 bzw. 2, Klimaaußengerät, RLT-Anlage 4 bzw. 6, Wärmepumpe)

¹ Erfahrungswert

6.4.3 Feuerwehrfahrzeug

Bei Übungen ist im Hofbereich mit Fahrbewegungen und Rangiertätigkeiten durch Lkw zu rechnen. Den Berechnungen wird pauschal ein Lkw mit einer Rangierzeit von 5 Minuten zugrunde gelegt. Daraus ergibt sich gemäß Tabelle 7 ein auf die Beurteilungszeit von 1 Stunde bezogener Schallleistungspegel von 92,8 dB(A).

Tabelle 7 – Teilpegel der Rangiervorgänge für 1 Lkw

	Anzahl	Einwirkzeit je Ereignis	L_WA	Korrektur Einwirkzeit	Teilpegel
		Lieigilis	dB(A)	dB(A)	dB(A)
Rangieren Lkw	1	5 Min.	99	-10,8	88,2
Betriebsbremse	2	5 Sek. *	108	-25,6	82,4
Türenschlagen	2	5 Sek. *	100	-25,6	74,4
Anlassen	1	5 Sek. *	100	-28,6	71,4
Rückfahrwarner	1	2,5 Min.	104 ¹	-13,8	90,2
Auf die Beurteilungszeit (1 Std.) bezog. Schallleistungspegel L _{WA,1h} 92,8 dB(A)					

^{*} Bezogen auf einen "5-Sekunden-Takt", damit wird von vornherein die Impulshaltigkeit berücksichtigt.

Westlich der Fahrzeughalle werden zusätzlich Leerlaufgeräusche der Lkw anhand eines anlagenbezogenen Schallleistungspegels von 94 dB(A)² berücksichtigt. Den Leerlaufgeräuschen bei Feuerwehrübungen wird eine Einwirkzeit von 30 Minuten tags zugrunde gelegt.

(Schallquellen im Rechenmodell: Übungen Lkw Leerlauf, Übungen Rangieren)

-

¹ Bayerisches Landesamt für Umweltschutz (2001): Verwendung von akustischen Rückfahrwarneinrichtungen.

² Knothe, Ekkehard; Busche, Hans-Joachim (2000): Leitfaden zur Prognose von Geräuschen bei der Be- und Entladung von Lkw. Geräuschemissionen und -immissionen bei der Be- und Entladung von Containern und Wechselbrücken, Silofahrzeugen, Tankfahrzeugen, Muldenkippern und Müllfahrzeugen an Müllumladestationen.

6.4.4 Kommunikation im Freien

Die Kommunikationsgeräusche bei Übungen im Freien wurden entsprechend Kapitel 6.3.5 ermittelt. Während der Übungen (20⁰⁰ Uhr bis 22⁰⁰ Uhr) werden ununterbrochen 20 sprechende Personen (40 Teilnehmer, Kommunikationsanteil 50%) angesetzt. Daraus ergibt sich ein anlagenbezogener Schalleistungspegel von 83,0 dB(A) zuzüglich eines Zuschlags für die Impulshaltigkeit von 3,6 dB.

(Schallquelle im Rechenmodell: Kommunikation Übungen)

6.4.5 Übungen mit Kleingeräten

Im Sinne einer "worst-case-Betrachtung" wird bei Übungen der Betrieb von Kleingeräten (Kettensäge, Dieselstromerzeuger o.ä.) über 1 Stunde tags berücksichtigt. Den Berechnungen wird ein anlagenbezogener Schallleistungspegel von 100 dB(A) zuzüglich eines Tonhaltigkeitszuschlags von 6 dB(A)¹ zugrunde gelegt.

(Schallquelle im Rechenmodell: Übungen Kleingeräte)

¹ Erfahrungswert

6.5 Zusammenfassung der Schallquellen

Nachstehend werden die Ansätze die dem Zwischenlager für Erdaushub sowie Einsätzen und Übungen der Feuerwehr zugrunde liegen zusammengefasst.

Tabelle 8 – Ansätze Zwischenlager tags

משכוור ס שוושמודר ביייובוור שלוור מייים	r tugo		
	/ Jusahl	Ansatz	Zuschläge für Ton- und
Schallquelle	Einwirkzeit	Halleninnenpegel (L _I) bzw. Schallleistungspegel	Impulshaltigkeit K₁ und K⊤ in dB
		in dB(A)	
Lkw Fahrten	50	e3*	-
Lkw Rangieren	20	87,4**	-
Material abkippen	20	107,0 *	0′8
Radlader (Aufhalden)	10 Stunden	107,0**	-
Radlader Rückfahrwarn.	5 Stunden	104,0**	-

^{*} meterbezogener Schallleistungspegel

^{**} anlagen- und stundenbezogener Schalleistungspegel

Schalltechnische Untersuchung Bebauungsplan "Feuerwehr Römerstraße" in Rheinfelden

Tabelle 9 – Ansätze Feuerwehreinsätze tags / nachts

Schallquelle	Anzahl / Einwirkzeit	Halleninnenpegel (Lı) bzw. Schallleistungspegel	Zuschläge für Ton- und Impuls- haltigkeit K₁ und K⊤ in dB
		in dB(A) ta	in dB(A) tags / nachts
Parkplatz	100 / 25	97,1 / 103,1**	-
Fahrzeughalle	8 Std. / 0,5 Std.	0'52 / 0'52	inkl.
Werkstatt	2 Std. / -	- / 0′08	inkl.
Waschhalle	4 Std. / -	83,0**	3,0
Abgasabsaugung	24 Std.	80,0	
Deflektorhaube Abluft 1	24 Std.	75,0	-
Deflektorhaube Abluft 2	24 Std.	75,0	
Klimaaußengerät	24 Std.	28,0	
RLT Anlage 4	24 Std.	75,0	-
RLT Anlage 6	24 Std.	75,0	-
Wärmepumpe	24 Std.	60,0	-
Lkw Fahrten (Hof)	8/9	*0'89	-

^{*} meter- bzw. m²-bezogener Schallleistungspegel

^{**} anlagen- und stundenbezogener Schalleistungspegel

Bebauungsplan "Feuerwehr Römerstraße" in Rheinfelden Schalltechnische Untersuchung

Fortsetzung Tabelle 9 – Ansätze Feuerwehreinsätze tags / nachts

	, .6		
Schallquelle	Anzahl / Einwirkzeit	Halleninnenpegel (L _I) bzw. Schallleistungspegel	Zuschläge für Ton- und Impuls- haltigkeit K, und K⊤ in dB
		in dB(A) ta	in dB(A) tags / nachts
Lkw Fahrten Waschhalle	-/9	63,0*	1
Lkw Rangieren	6 / 3 Lkw je 1 Min. / 30 Sek.	85,9 / 78,2**	
Leerlaufgeräusche Hof	3 Lkw je 2 Min. / 15 Sek.	94,0**	•
Leerlaufgeräusche Ost	Insges. 15 Min. tags	94,0**	
Transporter Fahrten	4 / 1	53,0*	
Transporter Fahrten Waschhalle	2 / -	53,0*	
Transporter Rangieren	2/1	68,2**	
Kommunikation	20 Pers. / -	**0'08	5,0
Kleingeräte	30 Min. / -	100,0**	0′9
Radlader Rückfahrwarn.	5 Stunden tags	104,0**	

^{*} meter- bzw. m²-bezogener Schallleistungspegel ** anlagen- und stundenbezogener Schalleistungspegel

Bebauungsplan "Feuerwehr Römerstraße" in Rheinfelden Schalltechnische Untersuchung

Tabelle 10 – Ansätze Feuerwehrübungen tags / Abfahrten nachts

Schallquelle	Anzahl / Einwirkzeit	Halleninnenpegel (L _I) bzw. Schallleistungspegel	Schallquelle
		in dB(A) ta	in dB(A) tags / nachts
Parkplatz	30/30	103,9 / 103,9**	-
Fahrzeughalle	2 Std. / -	-/0′5/	inkl.
Werkstatt	2 Std. / -	- / 0′08	inkl.
Techn. Einrichtungen	24 Std.	Siehe Tabelle 9	ı
Lkw Rangieren	5 Min. / -	92,8 / -**	ı
Leerlaufgeräusche Hof	30 Min. / -	94,0 / - **	•
Kommunikation	40 Pers. / -	83,0 / - **	9'8
Kleingeräte	1 Std. / -	100,0 / - **	6,0

^{*} meter- bzw. m²-bezogener Schallleistungspegel ** anlagen- und stundenbezogener Schalleistungspegel

6.6 Spitzenpegel

Maßgeblich sind Geräuschspitzen durch Vorgänge im Freien. Demnach ist mit folgenden Schallleistungspegeln für Einzelereignisse^{1,2,3} ⁴⁵zu rechnen:

Türen schlagen Pkw	97,5 dB(A)
Betriebsbremse Lkw	108 dB(A)
Rufen normal	86 dB(A)
Betriebsbremse Lkw	108 dB(A)
Radlader Verladen	123 dB(A)
Abkippen Asphalt	121 dB(A)

6.7 Vorbelastung

Die Richtwerte gelten für alle Anlagen/Gewerbebetriebe gemeinsam, d.h. die Vorbelastung durch bereits ansässige Betriebe muss berücksichtigt werden. Nach Abs. 3.2.1 der TA Lärm gilt als Irrelevanz-Kriterium für die Berücksichtigung der Vorbelastung eine Unterschreitung des Richtwerts um 6 dB(A) durch den Beurteilungspegel der Anlage.

Eine Vorbelastung ergibt sich durch die Anlage des DRK (Deutsches Rotes Kreuz Ortsverein Rheinfelden e.V.). Die Berücksichtigung der Vorbelastung erfolgt pauschal durch folgende Ansätze:

2036/2 - 7. September 2020

¹ Bayerisches Landesamt für Umwelt (2007): Parkplatzlärmstudie, Empfehlungen zur Berechnung von Schallemissionen aus Parkplätzen, Autohöfen und Omnibusbahnhöfen sowie von Parkhäusern und Tiefgaragen - 6. überarbeitete Auflage.

² Lenkewitz, Knut; Müller, Jürgen (2005): Technischer Bericht zur Untersuchung der Geräuschemissionen durch Lastkraftwagen auf Betriebsgeländen von Frachtzentren, Auslieferungslagern, Speditionen und Verbrauchermärkten sowie weiterer typischer Geräusche insbesondere von Verbrauchermärkten. Wiesbaden: HLUG.

³ VDI 3770 - Emissionskennwerte von Schallquellen Sport- und Freizeitanlagen. September 2012

⁴ Krämer, Erich; Leiker, Herbert; Wilms, Ulrich (2004): Technischer Bericht zur Untersuchung der Geräuschemissionen von Baumaschinen. Wiesbaden: HLUG.

Job, Ralf; Kurtz, Wilhelm (2002): Technischer Bericht zur Untersuchung der Geräuschemissionen von Anlagen zur Abfallbehandlung und -verwertung sowie Kläranlagen. TÜV-Bericht Nr. 933/423901 bzw. 933/132001. Wiesbaden: HLUG.

Transporter Fahrten und Rangieren

Bei Einsätzen rückt ein Rettungsfahrzeug (Ansatz: Sprinter-Klasse) über die Toren an der Nordfassade des Gebäudes aus. Die Zu- und Abfahrten werden in den Berechnungen jeweils mit einem längenbezogenen Schallleistungspegel¹ von 53 dB(A)/m mit 8 Bewegungen tags (4 Einsätze) und zwei Bewegungen in der "lautesten Nachtstunde" (z.B. Aus- und Einrücken) angesetzt.

Der Rangiervorgang des Rettungswagens wird im Rechenmodell anhand eines anlagenbezogenen Schallleistungspegel von 89 dB(A) und einer Einwirkzeit von 30 Sekunden berücksichtigt. Daraus ergibt sich ein auf die Beurteilungszeit (1 Stunde) bezog. Schallleistungspegel von 68,2 dB(A).

(Schallquelle im Rechenmodell: DRK Rangieren, DRK Fahrten)

Parkplatz

Die Schallleistung auf dem Parkplatz östlich des Gebäudes für Pkw wird nach dem Normalfall (sog. zusammengefasstes Verfahren) der Parkplatzlärmstudie² (siehe Kapitel 6.3.1 bzw. 6.4.1) bestimmt. Den Berechnungen liegen folgende Ansätze zugrunde:

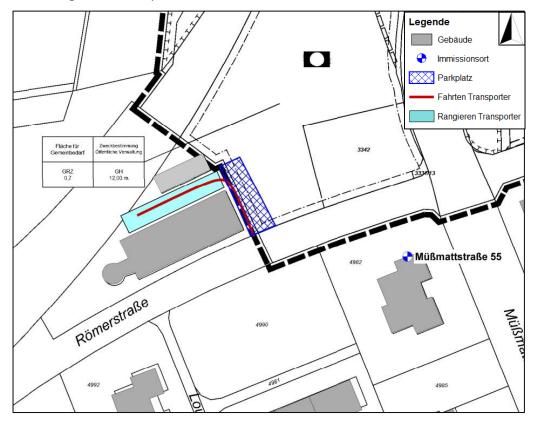
K _{PA}	Zuschlag für die Parkplatzart, hier: Besucher- und Mitarbeiterparkplätze +0 dB(A)
K_{l}	Zuschlag für die Impulshaltigkeit, hier jeweils +4 dB(A)
K_{D}	Zuschlag für den Durchfahranteil, hier +1,2 dB(A)
K _{StrO}	Zuschlag für die Fahrbahnoberfläche, hier 0 dB(A) (Fahrgassen: Asphalt)
В	Bezugsgröße, hier 12 Stellplätze
N	Bewegungshäufigkeit, hier je 0,25 Bewegungen je Stellplatz tags (6^{00} bis 22^{00} Uhr) und 0,5 Bewegungen je Stellplatz nachts (22^{00} Uhr bis 6^{00} Uhr).

S Gesamtfläche


Der in den Anlagen dargestellte Schallleistungspegel für den Parkplatz bezieht sich auf den gesamten Parkplatz bei einer Bewegung je Stellplatz und Stunde.

(Schallquelle im Rechenmodell: DRK Parkplatz)

¹ Erfahrungsgemäß liegen die Schallemissionen von Transportern rund 10 dB(A) unter denen von I kw


2036/2 - 7. September 2020

² Bayerisches Landesamt für Umwelt (2007): Parkplatzlärmstudie, Empfehlungen zur Berechnung von Schallemissionen aus Parkplätzen, Autohöfen und Omnibusbahnhöfen sowie von Parkhäusern und Tiefgaragen - 6. überarbeitete Auflage.

Die Lage der Schallquellen des DRK-Rheinfelden geht aus der Abbildung 12 hervor.

Abbildung 12 - Schallquellen DRK

6.8 Ausbreitungsberechnung

Die Berechnungen erfolgten mit dem EDV-Programm SoundPlan auf der Basis der DIN ISO 9613-2¹. Das Modell berücksichtigt:

- die Anteile aus Reflexionen der Schallquellen an Stützmauern, Hausfassaden oder anderen Flächen (Spiegelschallquellen-Modell), gerechnet wurde bis zur 3. Reflexion,
- Pegeländerungen aufgrund des Abstandes und der Luftabsorption,
- Pegeländerungen aufgrund der Boden- und Meteorologiedämpfung, es wird für den gesamten Untersuchungsraum ein Bodenfaktor von 0,6 (0,0 = schallhart; 1,0 = schallweich) berücksichtigt,
- Pegeländerungen durch topographische und bauliche Gegebenheiten (Mehrfachreflexionen und Abschirmungen),
- o einen leichten Wind, etwa 3 m/s, zum Immissionsort hin und Temperaturinversion, die beide die Schallausbreitung fördern,
- Die Minderung durch die meteorologische Korrektur C_{met} wurde im Sinne einer "Worst Case"-Betrachtung mit 0 dB(A) angesetzt.

Die Ergebnisse der Berechnungen sind in den Lärmkarten im Anhang dargestellt. In einem Rasterabstand von 5 m und in einer Höhe von 5 m über Gelände (entspricht dem 1. Obergeschoss) wurden die Beurteilungspegel für das gesamte Untersuchungsgebiet berechnet und die Isophonen mittels einer mathematischen Funktion (Bezier) bestimmt. Die Farbabstufung wurde so gewählt, dass ab den hellroten Farbtönen die Immissionsrichtwerte für allgemeine Wohngebiete überschritten werden.

Die Lärmkarten können aufgrund unterschiedlicher Rechenhöhen und Reflexionen nur eingeschränkt mit Pegelwerten aus Einzelpunktberechnungen verglichen werden. Maßgeblich für die Beurteilung sind die Ergebnisse der Einzelpunktberechnungen.

-

¹ DIN ISO 9613-2 Dämpfung des Schalls bei der Ausbreitung im Freien - Teil 2: Allgemeines Berechnungsverfahren (ISO 9613-2: 1996). Oktober 1999.

6.9 Qualität der Prognose

Folgende Einflussfaktoren haben Auswirkungen auf die Qualität der Ergebnisse der schalltechnischen Untersuchung:

- Die Angaben zu den Emissionsansätzen basieren auf einer Maximalauslastung ("Worst Case"-Ansatz):
 - Im Bereich des Erdaushub-Zwischenlagers wird tags von der Anlieferung bzw. Abholung von Material durch 20 Lkw pro Tag ausgegangen.
 Tatsächlich ist tags voraussichtlich mit deutlich weniger Lkw zu rechnen.
 - Die Vorgänge und Tätigkeiten in der Fahrzeughalle werden mit einer Einwirkzeit von 8 Stunden tags berücksichtigt. Tatsächlich ist von einer geringeren Einwirkzeit auszugehen.
 - Die Fahrzeugreinigung wurde über 4 Stunden tags angesetzt. In der Realität ist von geringeren Einwirkzeiten auszugehen.
 - Es wird davon ausgegangen, dass bei Einsätzen ein vollständiger Löschzug, bestehend aus 3 Lkw und einem Transporter, ausrückt. In der Realität rücken bei kleineren Einsätzen teilweise weniger Fahrzeuge aus.
 - Alle Pkw befahren den Parkplatz im Osten des Betriebsgrundstücks der Feuerwehr über die südliche Zufahrt. Es wird von 25 An- und Abfahrten je Einsatz ausgegangen. Tatsächlich fahren bei den meisten Einsätzen weniger Feuerwehrleute auf das Grundstück.
 - Den Lkw wird unterstellt, dass diese beim Rückwärtsfahren/-rangieren tags akustische Rückfahrwarneinrichtungen einsetzen.
- Die Berechnungen der Schallimmissionen wurden mit dem EDV-Programm SoundPlan in der Version 8.1 durchgeführt. Das Programm erfüllt die Qualitätsanforderungen der DIN 45687¹.

Mit den gewählten Ansätzen befinden sich die in dieser Untersuchung ermittelten Beurteilungspegel voraussichtlich an der oberen Grenze der zu erwartenden Schallimmissionen.

-

¹ DIN 45687 - Akustik - Software-Erzeugnisse zur Berechnung der Geräuschimmissionen im Freien - Qualitätsanforderungen und Prüfbestimmungen. Mai 2006.

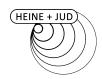
7 Ergebnisse und Beurteilung

7.1 Zwischenlager und Feuerwehr-Einsätze

Durch die Einsätze werden mit Berücksichtigung der in Kapitel 5 genannten Schallschutzmaßnahmen die folgenden Beurteilungspegel erreicht:

Tabelle 11 – Beurteilungspegel Einsätze

Immissionsort		ngspegel (A)	IRW dB(A)		nreitung (A)
	tags	nachts	tags/nachts	tags	nachts
BG "östl. Cranachstr. 2.0G	49	34		-	-
Kleemattstraße 11 W N, EG	47	40		-	-
Kleemattstraße 11 O N, 1:OG	47	40			
Müßmattstraße 72 _{O, 3.0G}	52	40	FF / 40	-	-
Müßmattstraße 55 N, 7.0G	50	37	55 / 40	-	-
Römerstraße 24 _{NW, EG}	49	40		-	-
Römerstraße 26 _{N, 1.0G}	50	40		-	-
Römerstraße 28 NW, EG	50	38		-	-
Büro Gärtnerei _{O, EG}	57	30 ^{*)}	60 / 45	-	-


^{*)} keine Nutzung nachts

Durch den gleichzeitigen Betrieb von Feuerwehr und Zwischenlager werden an der Bebauung im allgemeinen Wohngebiet Beurteilungspegel bis zu 52 dB(A) tags hervorgerufen. An dem Büroraum der Gärtnerei ist insbesondere durch den Betrieb des Zwischenlagers mit Beurteilungspegeln bis 57 dB(A) zu rechnen.

Bei Nachteinsätzen ist an der bestehenden Bebauung im Wohngebiet mit Beurteilungspegeln bis zu 40 dB(A) und mit Beurteilungspegeln bis 30 dB(A) an dem Büro des Gärtnereibetriebs zu rechnen.

Die jeweils zulässigen Immissionsrichtwert der TA Lärm werden tags und nachts an allen Immissionsorten eingehalten.

Die ausführlichen Pegeltabellen befinden sich in Anlage 6 – 24. Die Pegelverteilung ist in den Karten 1 und 2 im Anhang dargestellt.

7.2 Zwischenlager und Feuerwehrübungen

Durch die Übungen werden folgende Beurteilungspegel (siehe Tabelle 12) erreicht:

Tabelle 12 – Beurteilungspegel Übungen

Immissionsort		ingspegel (A)	IRW dB(A)		nreitung (A)
	tags	nachts	tags/nachts	tags	nachts
BG "östl. Cranachstr. 2.0G	47	26		-	-
Kleemattstraße 11 W N, EG	54	34		-	-
Kleemattstraße 11 O N, 1.0G	54	35			
Müßmattstraße 72 _{0,3.06}	55	31	FF / 40	-	-
Müßmattstraße 55 N, 7.0G	49	33	55 / 40	-	-
Römerstraße 24 NW, 1.0G	46	40		-	-
Römerstraße 26 N, 1.0G	46	40		-	-
Römerstraße 28 NW, 1.0G	45	39			-
Büro Gärtnerei _{O, EG}	56	31*)	60 / 45	-	-

^{*)} keine Nutzung nachts

Die Beurteilungspegel hervorgerufen durch das Zwischenlager und Feuerwehrübungen betragen tags an der Bebauung im allgemeinen Wohngebiet bis zu 55 dB(A) und bis 56 dB(A) im Mischgebiet.

In der lautesten Nachtstunde ergeben sich durch Pkw-Abfahrten Beurteilungspegel bis zu 40 dB(A) im allgemeinen Wohngebiet sowie bis 31 dB(A) im Mischgebiet.

Die jeweils zulässigen Immissionsrichtwert der TA Lärm werden tags und nachts an allen Immissionsorten eingehalten.

Die ausführlichen Pegeltabellen befinden sich in Anlage 29 – 38. Die Pegelverteilung ist in den Karten 3 und 4 im Anhang dargestellt.

7.3 Vorbelastung

Eine Vorbelastung ergibt sich durch die Anlage des DRK (Deutsches Rotes Kreuz Ortsverein Rheinfelden e.V.). Im Rechenmodell wurden die Schallquellen der Vor- und Zusatzbelastung gleichzeitig berücksichtigt.

7.4 Spitzenpegelbetrachtung

Bei Einsätzen sowie bei Übungen können Spitzenpegel durch z.B. die Betriebsbremse der Lkw sowie durch "Türenschlagen" auftreten.

Tags ist im allgemeinen Wohngebiet mit Pegelspitzen bis 67 dB(A) tags durch das Abkippen von Erdaushub o.ä. Materialien zu rechnen. An dem Büroraum der Gärtnerei werden durch den o.g. Vorgang Pegelspitzen bis 83 dB(A) hervorgerufen.

Nachts ist an der Bebauung im allgemeinen Wohngebiet mit Pegelspitzen bis rund 59 dB(A) durch "Türenschlagen" auf den südlich gelegenen Pkw-Stellplätzen zu rechnen.

Im allgemeinen Wohngebiet werden die zulässigen Werte für Geräuschspitzen von 85 dB(A) tags und 60 dB(A) nachts an allen Immissionsorten eingehalten. An dem Büroraum der Gärtnerei wird der zulässige Wert für Geräuschspitzen von 90 dB(A) tags eingehalten.

7.5 Fahrverkehr im öffentlichen Straßenraum

Gemäß der TA Lärm ist der Fahrverkehr im öffentlichen Straßenraum ebenfalls zu berücksichtigen. Durch die Feuerwehr ist im ungünstigsten Fall mit einem Verkehrsaufkommen von 16 Einsatzfahrzeugen (2 Einsätze) und 100 Pkw-Bewegungen tags sowie 8 Einsatzfahrzeugen und 50 Pkw-Bewegungen nachts auszugehen.

Um eine Erhöhung der Verkehrszahlen um 3 dB(A) zu erreichen, wäre eine Verdoppelung der derzeitigen Verkehrszahlen erforderlich. Aufgrund der derzeitigen Verkehrsbelastung kann eine kumulative Erfüllung der in Kapitel 3.3 genannten Punkte ausgeschlossen werden.

Es sind keine zusätzlichen organisatorischen Maßnahmen gegenüber dem Straßenverkehr erforderlich.

8 Zusammenfassung

Die schalltechnische Untersuchung zum Bebauungsplan "Feuerwehr Römerstraße" in Rheinfelden kann wie folgt zusammengefasst werden:

- Zur Beurteilung der künftigen Situation wurden die Immissionsrichtwerte der TA Lärm¹ herangezogen. Für die nächstgelegene schutzbedürftige Bebauung wurden die Richtwerte für allgemeine Wohngebiete von tags 55 dB(A) und nachts 40 dB(A) sowie der Immissionsrichtwert für Mischgebiete von 60 dB(A) tags herangezogen. Einzelne kurzzeitige Geräuschspitzen sollen den Tagrichtwert um nicht mehr als 30 dB(A) und den Nachtrichtwert um nicht mehr als 20 dB(A) überschreiten.
- Entsprechend der Regelung der TA Lärm muss der Gesamtbetrieb betrachtet werden. Eine Abkopplung einzelner Anlagen oder Schallquellen ist in der Regel nicht zulässig.
- Es wurde die Abstrahlung der maßgeblichen Schallquellen bestimmt und zum Beurteilungspegel zusammengefasst, unter Berücksichtigung der Einwirkzeit, der Ton- und Impulshaltigkeit und der Pegelminderung auf dem Ausbreitungsweg. Grundlage hierfür waren Literaturangaben sowie Angaben seitens des Auftraggebers.
- Bereits im Vorfeld wurden Schallschutzmaßnahmen zur Einhaltung der zulässigen Immissionsrichtwerte konzipiert, die in den Berechnungen bereits berücksichtigt wurden. Im Einzelnen handelt es sich um folgende Maßnahmen:
 - Die Hallentore werden über eine Fernbedienung geöffnet, so dass die Standzeit der Fahrzeuge im Freien minimiert wird.
 - Beim Einrücken nachts, zwischen 22⁰⁰ Uhr und 6⁰⁰ Uhr, verlassen die Feuerwehrleute die Einsatzfahrzeuge erst in der Fahrzeughalle. Es erfolgt kein Türenschlagen im Hofbereich.
 - Das Abrüsten nachts erfolgt in der Fahrzeughalle ausschließlich bei geschlossenen Toren.
 - Rückfahrwarneinrichtungen werden im Zeitraum nachts (22⁰⁰ Uhr bis 6⁰⁰ Uhr) nicht betrieben.
 - Die in Kapitel 6.3.3 aufgeführten anlagenbezogenen Schallleistungspegel für die Anlagen auf dem Dach dürfen nicht überschritten werden. Im Zuge der konkreten Ausführungsplanung ist darauf zu achten,

-

Sechste Allgemeine Verwaltungsvorschrift zum Bundesimmissionsschutz-gesetz (Technische Anleitung zum Schutz gegen Lärm - TA Lärm) vom 26. August 1998 (GMBI Nr. 26/1998 S. 503), zuletzt geändert durch Bekanntmachung des BMUB vom 1. Juni 2017 (BAnz AT 08.06.2017 B5), in Kraft getreten am 9. Juni 2017.

dass technische Anlagen (z.B.: Klima-, Lüftungsanlagen) die Anforderungen der TA Lärm an der umliegenden schutzbedürftigen Bebauung erfüllen.

- Mit Fahrzeugreinigungen im Zeitraum nachts (22⁰⁰ Uhr bis 6⁰⁰ Uhr) ist im Regelbetrieb nicht zu rechnen.
- Feuerwehrsirenen an den Fahrzeugen dürfen erst im öffentlichen Straßenraum in Betrieb genommen werden. Ggf. ist eine Lichtsignalanlage zu installieren, durch die eine sichere Ausfahrt der Einsatzfahrzeuge gewährleistet werden kann.
- Im Nachtzeitraum (22⁰⁰ bis 6⁰⁰ Uhr) ist eine Kommunikation im Hofbereich nicht möglich. Ggf. ist dies über Dienstanweisungen sicherzustellen.
- Durch den gleichzeitigen Betrieb von Feuerwehr und Zwischenlager werden an der Bebauung im allgemeinen Wohngebiet Beurteilungspegel bis zu 52 dB(A) tags hervorgerufen. An dem Büroraum der Gärtnerei ist insbesondere durch den Betrieb des Zwischenlagers mit Beurteilungspegeln bis 57 dB(A) zu rechnen. Bei Nachteinsätzen ist an der bestehenden Bebauung im Wohngebiet mit Beurteilungspegeln bis zu 40 dB(A) und mit Beurteilungspegeln bis 30 dB(A) an dem Büro des Gärtnereibetriebs zu rechnen.
- Die Beurteilungspegel hervorgerufen durch das Zwischenlager und Feuerwehrübungen betragen tags an der Bebauung im allgemeinen Wohngebiet bis zu 55 dB(A) und bis 56 dB(A) im Mischgebiet. In der lautesten Nachtstunde ergeben sich durch Pkw-Abfahrten Beurteilungspegel bis zu 40 dB(A) im allgemeinen Wohngebiet sowie bis 31 dB(A) im Mischgebiet.
- Die Forderung der TA Lärm hinsichtlich des Spitzenpegelkriteriums wird erfüllt.
- Eine Vorbelastung ergibt sich durch die Anlage des DRK (Deutsches Rotes Kreuz Ortsverein Rheinfelden e.V.). Im Rechenmodell wurden die Schallquellen der Vor- und Zusatzbelastung gleichzeitig berücksichtigt.
- Es sind keine Maßnahmen organisatorischer Art gegenüber dem betriebsbedingten Fahrverkehr im öffentlichen Straßenraum erforderlich.

9 Anhang

Ergebnistabellen

Rechenlaufinformation Einsätze und Zwischenlager	Anlage A1 – A2
Liste der Schallquellen Einsätze und Zwischenlager	Anlage A3 – A5
Ausbreitungsberechnung Einsätze und Zwischenlager	Anlage A6 – A24
Rechenlaufinformation Übungen	Anlage A25 – A26
Liste der Schallquellen Übungen	Anlage A27 – A28
Ausbreitungsberechnung Übungen	Anlage A29 – A38

Lärmkarten

Pegelverteilung Einsätze und Zwischenlager	Karte 1
Pegelverteilung Einsätze und Zwischenlager	Karte 2
Pegelverteilung Übungen tags und Zwischenlager	Karte 3
Pegelverteilung Übungen nachts	Karte 4

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Rechenlaufinformation Einsätze -

Projektbeschreibung

Projekttitel: Feuerwehr u. Zw.-Lager Rheinfelden II

Projekt Nr.: 2036 Projektbearbeiter: CR

Auftraggeber: Stadtverwaltung Rheinfelden

Beschreibung:

Rechenlaufparameter

Reflexionsordnung 3

Maximaler Reflexionsabstand zum Empfänger 200 m Maximaler Reflexionsabstand zur Quelle 50 m

Suchradius 5000 m Filter: dB(A) Zulässige Toleranz (für einzelne Quelle): 0,100 dB

Bodeneffektgebiete aus Straßenoberflächen erzeugen: Nein

Richtlinien:

Gewerbe: ISO 9613-2: 1996

Luftabsorption: ISO 9613-1

regulärer Bodeneffekt (Kapitel 7.3.1), für Quellen ohne Spektrum automatisch alternativer Bodeneffekt

Begrenzung des Beugungsverlusts:

einfach/mehrfach 20,0 dB /25,0 dB

Seitenbeugung: Veraltete Methode (seitliche Pfade auch um Gelände)

Verwende Glg (Abar=Dz-Max(Agr,0)) statt Glg (12) (Abar=Dz-Agr) für die Einfügedämpfung

Umgebung:

Luftdruck 1013,3 mbar relative Feuchte 70,0 % Temperatur 10,0 °C

Meteo. Korr. C0(6-22h)[dB]=0,0; C0(22-6h)[dB]=0,0; Cmet für Lmax Gewerbe Berechnungen ignorieren: Nein

Beugungsparameter: C2=20,0

Zerlegungsparameter:

Faktor Abstand / Durchmesser 8

Minimale Distanz [m] 1 m

Max. Differenz Bodendämpfung + Beugung 1,0 dB

Max. Iterationszahl 4

Minderung

Bewuchs: ISO 9613-2 Bebauung: ISO 9613-2 Industriegelände: ISO 9613-2

Parkplätze: ISO 9613-2: 1996

Emissionsberechnung nach: Parkplatzlärmstudie 2007

Luftabsorption: ISO 9613-1

regulärer Bodeneffekt (Kapitel 7.3.1), für Quellen ohne Spektrum automatisch alternativer Bodeneffekt

Begrenzung des Beugungsverlusts:

einfach/mehrfach 20,0 dB /25,0 dB

Seitenbeugung: Veraltete Methode (seitliche Pfade auch um Gelände)

Verwende Glg (Abar=Dz-Max(Agr,0)) statt Glg (12) (Abar=Dz-Agr) für die Einfügedämpfung

Umgebung:

Luftdruck 1013,3 mbar relative Feuchte 70,0 % Temperatur 10.0 °C

Meteo. Korr. C0(6-22h)[dB]=0,0; C0(22-6h)[dB]=0,0; Cmet für Lmax Gewerbe Berechnungen ignorieren: Nei

Beugungsparameter: C2=20,0

Zerlegungsparameter:

Faktor Abstand / Durchmesser 8
Minimale Distanz [m] 1 m

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Rechenlaufinformation Einsätze -

Max. Differenz Bodendämpfung + Beugung 1,0 dB

Max. Iterationszahl 4

Minderung

Bewuchs: ISO 9613-2
Bebauung: ISO 9613-2
Industriegelände: ISO 9613-2

Bewertung:

Reflexion der "eigenen" Fassade wird unterdrückt

TA-Lärm 1998/2017 - Sonntag

<u>Geometrie date n</u>

Prognose Einsätze.sit	07.09.2020 10:34:52
- enthält:	
DRK.geo	17.08.2020 12:18:40
G001_Gebäude.geo	07.09.2020 09:45:58
1001 Immissionsorte.geo	17.08.2020 11:39:24
Q001 Einsätze.geo	17.08.2020 11:39:24
Q002 Bauhof.geo	07.09.2020 10:08:06
R001 Rechengebiet.geo	07.09.2020 11:04:04
RDGM0001.dgm	10.07.2020 11:12:12

Feuerwehr u. Zw.-Lager Rheinfelden II - Liste der Schallquellen, Einsätze -Schalltechnische Untersuchung

HEINE + JUD

Legende

Name Quelltyp I oder S

Größe der Quelle (Länge oder Fläche)

Innenpegel

Typ der Quelle (Punkt, Linie, Fläche)

Quellname

Schalldämm-Maß Schalleistungspegel pro Anlage Schalleistungspegel pro m, m² Zuschlag für Impulshaltigkeit Zuschlag für Tonhaltigkeit Maximalpegel

Schallleistungspegel dieser Frequenz Schallleistungspegel dieser Frequenz Schallleistungspegel dieser Frequenz Schallleistungspegel dieser Frequenz

Li Lw L'w KI KI KI KI 125Hz 250Hz 500Hz 1KHZ 4KHZ 8KHZ

Schallleistungspegel dieser Frequenz Schallleistungspegel dieser Frequenz Schallleistungspegel dieser Frequenz Schallleistungspegel dieser Frequenz

Ergebnisnr.: 3

Heine + Jud - Ingenieurbüro für Umweltakustik

SoundPLAN 8.1

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Liste der Schallquellen, Einsätze

Name	Quelityp	I oder S	ij	A.	Lw	L'w	조	Ā	ГмМах	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz
		m,m²	dB(A)	dB (dB(A)	dB(A)	dB	dB	dB(A)								
Ausblasöffnung Abgasabsaugung	Punkt				80,0	0,08	0,0	0,0		47,5	65,1	74,1	73,5	71,7	72,9	70,2	9'99
Deflektorhaube Abluft 1	Punkt				75,0	75,0	0,0	0,0		42,5	60,1	69,1	68,5	2'99	6,79	65,2	61,6
Deflektorhaube Abluft 2	Punkt				75,0	75,0	0,0	0,0		42,5	60,1	69,1	68,5	2'99	6,79	65,2	61,6
DRK Fahrten	Linie	63			71,0	53,0	0,0	0,0	97,5	51,3	54,3	60,3	63,3	67,3	64,3	58,3	50,3
DRK Parkplatz	Parkplatz	288			79,0	54,4	0,0	0,0	97,5	62,3	73,9	66,4	6'02	71,0	71,4	68,7	62,5
DRK Transporter Rangieren	Fläche	300			68,2	43,4	0,0	0,0	97,5	48,5	51,5	57,5	60,5	64,5	61,5	52,5	47,5
Einsatzfahrzeuge Leerlauf	Fläche	260			94,0	6,69	0,0	0,0	97,5	74,3	77,3	83,3	86,3	90,3	87,3	81,3	73,3
Einsatzfahrzeuge Leerlauf Ost	Fläche	617			94,0	1,99	0,0	0,0	97,5	74,3	77,3	83,3	86,3	90,3	87,3	81,3	73,3
Fahrzeughalle Dach	Fläche	1090	75,0	35	69,2	38,8	0,0	0,0		26'2	62,7	57,4	59,2	65,7	55,2	41,7	33,7
Fahrzeughalle Oberlicht 1	Fläche	2	75,0	21	8,73	51,0	0,0	0,0		41,2	41,4	54,6	53,6	47,4	33,2	17,0	7,2
Fahrzeughalle Oberlicht 2	Fläche	5	75,0	21	57,8	51,0	0,0	0,0		41,2	41,4	54,6	53,6	47,4	33,2	17,0	7,2
Fahrzeughalle Oberlicht 3	Fläche	2	75,0	21	8,73	51,0	0,0	0,0		41,2	41,4	54,6	53,6	47,4	33,2	17,0	7,2
Fahrzeughalle Oberlicht 4	Fläche	5	75,0	21	57,8	51,0	0,0	0,0		41,2	41,4	54,6	53,6	47,4	33,2	17,0	7,2
Fahrzeughalle Oberlicht 5	Fläche	5	75,0	21	57,8	51,0	0,0	0,0		41,2	41,4	54,6	53,6	47,4	33,2	17,0	7,2
Fahrzeughalle Tore nachts	Fläche	108	75,0	15	74,3	54,0	0,0	0,0		61,7	56,1	60,3	68,1	9'02	9'99	9'09	50,7
Fahrzeughalle Tore tags	Fläche	245	75,0	0	6'86	75,0	0,0	0,0		79,2	82,2	88,2	91,2	95,2	92,2	86,2	78,2
Funktionstest Kleingeräte	Fläche	1361			100,0	2'89	0,0	0,9		67,4	77,4	84,4	90,4	93,4	94,4	94,4	89,4
Klimaaußengerät	Punkt				28,0	28,0	0,0	0,0		25,5	43,1	52,1	51,5	49,7	6'09	48,2	44,6
Kommunikation tags	Fläche	1039			80,0	49,8	5,0	0,0	0,06	37,9	43,0	55,0	75,0	77,0	72,0	63,9	46,9
Lkw Fahrten 1	Linie	125			84,0	63,0	0,0	0,0	97,5	64,3	67,3	73,3	76,3	80,3	77,3	71,3	63,3
Lkw Fahrten 2	Linie	116			83,7	63,0	0,0	0,0	97,5	64,0	67,0	73,0	76,0	0,08	77,0	71,0	63,0
Lkw Fahrten 3	Linie	107			83,3	63,0	0,0	0,0	97,5	9,69	9'99	72,6	75,6	9,67	9'92	9'02	62,6
Lkw Fahrten Waschhalle	Linie	86			82,9	63,0	0,0	0,0	97,5	63,2	66,2	72,2	75,2	79,2	76,2	70,2	62,2
Lkw Rangieren Einsatz nachts	Fläche	1625			78,2	16,1	0,0	0,0		58,5	61,5	67,5	70,5	74,5	71,5	65,5	57,5
Lkw Rangieren Einsatz tags	Fläche	1625			85,9	53,8	0,0	0,0		66,2	69,2	75,2	78,2	82,2	79,2	73,2	65,2
Parkplatz Einsätze	Parkplatz	2345			89,1	55,3	0,0	0,0	97,5	72,4	84,0	76,5	81,0	81,1	81,5	78,8	72,6
Pkw Fahrten	Linie	7			56,2	47,5	0,0	0,0		36,6	39,6	45,6	48,6	52,6	49,6	43,6	35,6
RLT-Anlage 4	Punkt				75,0	75,0	0,0	0,0		42,5	60,1	69,1	68,5	2'99	6,79	65,2	61,6
RLT Anlage 6	Punkt				75,0	75,0	0,0	0,0		42,5	60,1	69,1	68,5	2'99	6,79	65,2	61,6

Heine + Jud - Ingenieurbüro für Umweltakustik

SoundPLAN 8.1

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Liste der Schallquellen, Einsätze

Name	Quelltyp	l oder S	<u> </u>	S.	Lw	L'w	조	₹ -	LwMax	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz
		m,m	dB(A)	ф	dB(A)	dB(A)	g B	ВВ	dB(A)								
Transporter Fahrten	Linie	86			72,9	53,0	0,0	0,0	97,5	53,3	56,3	62,3	65,3	69,3	66,3	60,3	52,3
Transporter Fahrten Waschhalle	Linie	86			72,9	53,0	0,0	0,0	97,5	53,2	56,2	62,2	65,2	69,2	66,2	60,2	52,2
Transporter Rangieren	Fläche	1766			68,2	35,7	0,0	0,0	97,5	48,5	51,5	57,5	60,5	64,5	61,5	55,5	47,5
Wärmepumpe	Punkt				0,09	0,09	0,0	0,0		27,5	45,1	54,1	53,5	51,7	52,9	50,2	46,6
Waschhalle Tor Ost	Fläche	34	83,0	0	98,3	83,0	0,0	3,0		78,8	81,4	83,0	84,2	88,4	90,5	91,9	94,2
Waschhalle Tor West	Fläche	34	83,0	0	98,4	83,0	0,0	3,0		6'82	81,5	83,1	84,3	88,5	9'06	92,0	94,3
Werkstatt	Fläche	34	0,08	0	95,4	0,08	0,0	0,0		49,2	61,8	71,6	7,77	86,1	92,4	2,68	84,2
ZwLager Abkippen	Fläche	1456			89,2	9,73	8,0	0,0	121,0	8'59	72,9	9,67	83,7	84,1	81,9	7,77	70,8
ZwLager Lkw-Fahrten	Linie	111			83,4	63,0	0,0	0,0	108,0	63,8	8,99	72,8	75,8	8'62	8'92	70,8	62,8
ZwLager Lkw-Rangieren	Fläche	2876			87,4	52,8	0,0	0,0	108,0	2'.29	70,7	76,7	79,7	83,7	2,08	74,7	2'99
ZwLager Radlader	Fläche	2876			102,0	72,4	0,0	0,0	123,0	86,5	89,5	95,5	100,5	102,5	99,5	95,5	95,5
ZwLager Radlader-RFW	Fläche	2876			104,0	69,4	0,0	0,0		71,0	81,0	0,88	94,0	0,76	0,86	0,86	0,96

Heine + Jud - Ingenieurbüro für Umweltakustik

Teilpegelliste Ausbreitungsberechnung, Einsätze -Feuerwehr u. Zw.-Lager Rheinfelden II Schalltechnische Untersuchung

Legende

Quelle I oder S

Mittlere Entfernung Schallquelle - Immissionsort

Bewertetes Schalldämm-Maß

nnenpegel

Größe der Quelle (Länge oder Fläche)

S Li Lw KI KI KA KA Adiv Adiv Adar dLw(LrT) CLS Lr Lr

Schallleistungspegel pro Anlage Schallleistungspegel pro m, m²

Zuschlag für İmpulshaltigkeit
Zuschlag für Tonhaltigkeit
Zuschlag für gerichtete Abstrahlung
Mittlere Dämpfung aufgrund geometrischer Ausbreitung
Mittlere Dämpfung aufgrund Bodeneffekt

Mittlere Dämpfung aufgrund Abschirmung Mittlere Dämpfung aufgrund Luftabsorption

Pegelerhöhung durch Reflexionen

Jnbewerteter Schalldruck am Immissionsort Ls=Lw+Ko+ADI+Adiv+Agr+Abar+Aatm+Afol_site_house+Awind+dLrefl

Ruhezeitenzuschlag (Anteil) Korrektur Betriebszeiten

Korrektur Betriebszeiten

Beurteilungspegel Tag Beurteilungspegel Nacht

Heine + Jud - Ingenieurbüro für Umweltakustik

HEINE + JUD

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

Ž	dB(A)		27,1	26,8	26,6	26,0	20,0	18,9	17,4	16,3	16,3	15,8	15,3	15,1	14,5	14,5	14,3	14,1	1,7	5,5	1,3	0,5	-1,4	-5,7	-5,7	-6,0	-6,2	-6,5	
Lrī	dB(A)		24,7	24,4	24,2		20,7	18,3	15,0	13,9	19,9	19,4	19,0	18,7	12,1	18,1	11,7		8,7	9,2	6,4	-1,9	2,2	-2,0	-2,1	-2,3	-2,6	-2,9	15,9
ZR(LrT)	dB		3,6	3,6	3,6		3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6		3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6
dLw(LrN)	dB	6 dB(A)	0,0	0,0	0,0	8,4	-3,0	-17,8	3,0	0,0	0,0	0,0	0,0	-6,0	3,0	0,0	-3,8	-3,0	0,0	-3,0	0,0	14,0	0,0	-3,0	-3,0	-3,0	-3,0	-3,0	
dLw(LrT)	qB	LN,max 44,6	0,9-	-6,0	-6,0		0,9-	-22,0	-3,0	-6,0	0,0	0,0	0,0	-6,0	-3,0	0,0	-10,0		-6,0	-3,0	0,0	8,0	0,0	-3,0	-3,0	-3,0	-3,0	-3,0	-18,1
Ls	dB(A)	2 dB(A)	27,1	26,8	26,6	21,2	23,1	36,7	14,4	16,3	16,3	15,8	15,3	21,1	11,5	14,5	18,1	17,1	1,1	8,5	1,3	-13,5	4,1	-2,6	-2,7	-3,0	-3,2	-3,5	30,3
dLrefl	dB	LT,max 63,	9,0	0,3	0,3	4,0	0,1	6,0	6,1	0,3	0,0	0,0	0,0	0,0	2,8	0,0	0,2	0,0	0,4	0,1	0,0	7,3	0,0	1,2	0,0	0,0	0,0	0,0	0,1
Aatm	dB	dB(A)	-1,1	<u>-</u> ,	-1,1	-1,2	-1,7	-1,2	-1,0	-, -,	-1,5	-1,8	-1,9	-1,7	-1,0	-2,0	-0,7	6,0-	-1,2	-0,4	4,1-	9'0-	-1,8	-0,3	-0,3	-0,3	-0,3	-0,3	-1,3
Abar	dB	LrN 33,8	0,0	0,0	0,0	0,0	0,0	0,0	-2,2	0,0	-0,5	-1,9	-2,2	-1,3	-3,8	-1,9	-12,0	0,0	0,0	7,4	-0,3	-17,0	-1,9	7,4	7,4	7,4	7,4	7,4-	6, 6
Agr	dB	48,1 dB(A)	-0,4	-0,4	-0,4	-0,4	-0,5	-0,5	-0,4	-0,4	1,0	1,0	1,0	1,0	-0,4	1,0	9,0-	9,0	-0,4	1,0	1,0	-0,5	1,0	<u>,</u>	<u>_</u>	<u></u>	<u></u>	<u></u>	-0,5
Adiv	dB	LrT	-55,7	-55,6	-55,5	-55,8	-54,4	-56,1	-54,2	-55,4	-57,8	-56,5	-56,6	-56,9	-54,2	-57,6	-57,8	-56,8	-55,9	-56,6	-58,0	-59,0	-56,7	-57,6	-56,5	-56,8	-57,0	-57,3	-57,1
Ko	dB	x 60 dB(A)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
잗	ф	RW,N,max	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
조	ф		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		0,0	0,0	0,0	0,0	0,0		0,0	0,0	0,0	0,0
L'w	dB(A)	RW,T,max 85 dB(A)	63,0	63,0	63,0	46,1	54,4	66)	53,0	53,0	75,0	75,0	75,0	80,0	43,4	75,0	55,3	54,0	35,7	38,8	0,09	47,5	58,0	51,0	51,0	51,0	51,0	51,0	66,1
Γw	dB(A)		84,0	83,7	83,3	78,2	79,0	94,0	71,0	72,9	75,0	75,0	75,0	80,0	68,2	75,0	89,1	74,3	68,2	69,2	0,09	56,2	58,0	57,8	57,8	57,8	57,8	8'29	94,0
R'w	dВ	RW,N 40 dB(A)																15		35				21	21	21	21	21	
ij	dB(A)																	75,0		75,0				75,0	75,0	75,0	75,0	75,0	
S	٤	RW,T 55 dB(A)	172	170	168	174	149	179	145	166	219	189	190	197	145	214	218	196	176	191	224	252	193	214	189	194	200	207	203
I oder S	m,m ²	2.0G R	125	116	107	1625	288	260	63	86					300		2345	108	1766	1090		7		2	2	2	2	2	617
Quelle		BG "östlich Cranachstraße" 2	Lkw Fahrten 1	Lkw Fahrten 2	Lkw Fahrten 3	Lkw Rangieren Einsatz nachts	DRK Parkplatz	Einsatzfahrzeuge Leerlauf	DRK Fahrten	Transporter Fahrten	RLT Anlage 6	Deflektorhaube Abluft 2	Deflektorhaube Abluft 1	Ausblasöffnung Abgasabsaugung	DRK Transporter Rangieren	RLT-Anlage 4	Parkplatz Einsätze	Fahrzeughalle Tore nachts	Transporter Rangieren	Fahrzeughalle Dach	Wärmepumpe	Pkw Fahrten	Klimaaußengerät	Fahrzeughalle Oberlicht 1	Fahrzeughalle Oberlicht 5	Fahrzeughalle Oberlicht 4	Fahrzeughalle Oberlicht 3	Fahrzeughalle Oberlicht 2	Einsatzfahrzeuge Leerlauf Ost

Ergebnisnr.: 3

Heine + Jud - Ingenieurbüro für Umweltakustik

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

Quelle	I oder S	S	ij	R'w	Γw	L'w	조	Ā	۸ 0	Adiv	Agr	Abar	Aatm	dLrefl	- R	dLw(LrT)	dLw(LrN)	ZR(LrT)	F	Z Z
	m,m²	E	dB(A)	dB	dB(A)	dB(A)	dB	ф	dB	В	dB	dB	ф	фB	dB(A)	dB	dB	dB	dB(A)	dB(A)
Fahrzeughalle Tore tags	245	185	75,0	0	6'86	75,0	0,0	0,0	0	-56,3	0,5	0,0	-1,1	0,0	42,0	-3,0		3,6	42,7	
Funktionstest Kleingeräte	1361	180			100,0	2'89	0,0	0,0	0	-56,1	0,3	0,0	-2,8	0,4	41,8	-15,1		3,6	36,4	
Kommunikation tags	1039	180			80,0	49,8	2,0	0,0	0	-56,1	6,0-	0,0	-1,0	0,4	22,5	-12,0		3,6	19,1	
Lkw Fahrten Waschhalle	86	180			82,9	63,0	0,0	0,0	0	-56,1	-0,4	6,0-	<u>-</u> ,	0,0	24,3	6,4	•	3,6	23,7	
Lkw Rangieren Einsatz tags	1625	174			85,9	53,8	0,0	0,0	0	-55,8	-0,4	0,0	-1,2	0,4	28,9	4,3		3,6	28,3	
Transporter Fahrten Waschhalle	86	180			72,9	53,0	0,0	0,0	0	-56,1	-0,4	6,0-	<u></u>	0,0	14,3	0'6-		3,6	6,8	
Waschhalle Tor Ost	34	192	83,0	0	98,3	83,0	0,0	3,0	0	-56,7	6,0	-22,7	-2,6	0,0	17,2	-6,0		3,6	17,8	
Waschhalle Tor West	34	172	83,0	0	98,4	83,0	0,0	3,0	0	-55,7	6,0	0,0	9,4	0,0	39,0	-6,0		3,6	39,6	
Werkstatt	34	170	0'08	0	95,4	0,08	0,0	0,0	0	-55,6	1,0	-0,2	-2,7	0,0	37,9	0,6-	•	3,6	32,4	
ZwLager Abkippen	1456	259			89,2	9'29	8,0	0,0	0	-59,2	6,0-	-6,4	<u>-</u> ,	0,1	21,7	1,		3,5	34,3	
ZwLager Lkw-Fahrten	111	259			83,4	63,0	0,0	0,0	0	-59,3	-0,5	-2,5	-1,5	0,1	19,8	1,1		3,5	24,4	
ZwLager Lkw-Rangieren	2876	275			87,4	52,8	0,0	0,0	0	-59,8	-0,4	-3,0	-1,5	0,0	22,7	1,1		3,5	27,3	
ZwLager Radlader	2876	275			102,0	72,4	0,0	0,0	0	-59,8	-0,5	-3,0	6,1-	0,0	41,9	-2,0		3,4	43,3	
ZwLager Radlader-RFW	2876	275			104,0	69,4	0,0	0,0	0	-59,8	0,4	-3,5	-3,8	0,1	37,5	-5,1		3,4	35,8	

Heine + Jud - Ingenieurbüro für Umweltakustik

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

Anlage A9

dB dB(A) dB(A)			0,0 22,7 28,9	22,7	22,7 11,0 15,6	22,7 11,0 15,6	22,7 11,0 15,6 14,2 5,2	22,7 11,0 15,6 14,2 5,2	22,7 11,0 15,6 14,2 5,2 5,1	22,7 11,0 15,6 14,2 5,2 5,1	22,7 11,0 15,6 14,2 5,2 5,1 5,0	22,7 11,0 15,6 14,2 5,1 5,0 5,1 3,4	22,7 11,0 15,6 14,2 5,1 5,1 3,4 1,4,5	22,7 11,0 15,6 14,2 5,1 5,1 5,0 6,0 8,0	22,7 11,0 15,6 14,2 5,1 1,6,3 6,0,8	22,7 11,0 15,6 15,2 5,2 1,7 1,7 1,5,0 1,5,0 1,5,0 1,5,1 1,5,0	22,7 11,0 15,6 1,7,2 1,7,0 1,6,0 1,6,1 1,6,1 1,6,1 1,6,1	22,7 11,0 15,6 15,6 5,1 5,0 6,0,8 7,4,1 1,6,1 1,6,1 1,6,1	22,7 11,0 15,6 14,2 5,2 5,1 5,0 6,4 6,4 6,4 7,6 1,6 1,6 1,6 1,6	22,7 11,0 15,6 14,2 5,2 5,2 5,1 5,0 6,4 6,4 6,4 7,4 6,4 1,6 1,6 1,2,6	22,7 11,0 14,2 14,2 5,2 5,1 5,0 6,4 6,4 6,4 6,4 7,6 12,9 7,6	22,7 11,0 14,2 14,2 5,2 5,1 5,1 6,1 6,1 6,8 12,6 12,6 12,9 15,1	22,7 11,0 14,2 5,2 5,2 5,1 5,1 6,3,4 -3,6 -3,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1	22,7 11,0 15,6 14,2 5,2 5,1 5,0 5,1 6,3,1 12,6 12,9 12,6 12,9 12,9 15,0	22,7 11,0 15,6 14,2 5,2 5,2 5,1 5,0 6,3,4 6,3,4 7,6 12,9 12,9 12,9 15,9 16,0	22,7 11,0 14,2 5,2 5,1 5,1 6,1 6,3,4 7,6 12,9 12,9 12,9 10,9 16,0	22,7 11,0 14,2 14,2 5,1 5,1 5,1 6,1 6,1 12,9 10,9 10,9 10,9 11,0 10,9 11,0 11,0 11	22,7 11,0 15,6 14,2 5,2 5,2 5,1 5,0 6,3,1 1,0,9 1,2,6 1,0,9 1,0,0 1,0 1
dB			3,8						_																			
$-$ 1 $^{\circ}$	¢	47,3 dB(A)	აĭ ├─	ω΄ <u>B</u>	ພ້	ນ໌	ພ້	ນ໌	ω,	δ. Δ	ລັ ————————————————————————————————————	ນ້ ————————————————————————————————————	ລັ	ລັ	ລັ ————————————————————————————————————	ρ. ————————————————————————————————————	ρ. ————————————————————————————————————	ρ. ————————————————————————————————————	ນ໌ ————————————————————————————————————	ກໍ ————————————————————————————————————	ກໍ ————————————————————————————————————	ກູ່ ————————————————————————————————————	ກຸ່ ————————————————————————————————————	ກໍ ————————————————————————————————————	ກູ່ ————————————————————————————————————	ກູ່ ————————————————————————————————————	ກູ່ ————————————————————————————————————	ກູ່ ————————————————————————————————————
dB dB(A)		A) LN,max 47	l lo		l 0 @ 4	1 10 0 4 8	1 10 0 4 0 -	0040-	0 0 4 8 F F A	00487-00	004807-	00487-04-0	004801-01	004877077000	00487777078	00487777707887	00487777707887	0 6 4 8 1 1 2 2 1 0 2 1 5 8 1 2 1 5										
dB d		LT,max 83,0 dB(A)	max 83,0 dB(A -0,3 2	max 83,0 dB(A -0,3 2 -1,1 2	max 83,0 dB(A -0,3 2 -1,1 2 -0,3 2	max 83,0 dB(A -0,3 2 -1,1 2 -0,3 2	max 83,0 dB(A -0,3 2 -1,1 2 -0,3 2 -0,4 3	max 83,0 dB(A) -0,3 2 -0,3 2 -0,4 3 -0,4 1	max 83,0 dB(A -0,3 2 -0,4 3 -0,4 1 -0,4 1 -0,4 1	max 83,0 dB(A) -0,3 2 -1,1 2 -0,3 2 -0,4 1 -0,4 1 -0,4 1 -0,5	max 83,0 dB(A -0,3 2 -0,4 3 -0,4 1 -0,4 1 -0,4 1 -0,5 0	max 83,0 dB(A) -0,3 2 -0,4 1 -0,4 1 -0,4 1 -0,5 0 -0,6 0	max 83,0 dB(A) -0,3 2 -1,1 2 -0,3 2 -0,4 1 -0,4 1 -0,6 0 -0,6 0 -0,6 1	max 83,0 dB(A) -0,3 2 -1,1 2 -0,3 2 -0,4 1 -0,4 1 -0,5 0 -0,6 0 -0,6 0 -0,6 0 -0,6	max 83,0 dB(A) -0,3 -1,1 -0,3 -0,4 -0,4 -0,4 -0,5 -0,6 -0,7 -0	max 83,0 dB(A) max 83,0 dB(A) 1,1,1 2,1 2,1,1 2,1	Max 83,0 dB(A) -0,3 -0,4 -0,4 -0,4 -0,6 -0,7 -0,6 -0,7 -0	Max 83,0 dB(A) 2 0,3 2 1,1,1 2 0,0,3 2 0,0,4 1 0,0,4 1 0,0,6	Max 83,0 dB(A) 1,1,1 2 1,1,1 2 1,1,1 2 2 1,1,1 2 2 2 2	Max 83,0 dB(A) 2	Max 83,0 dB(A) 1,1,1 2 1,1,1 2 1,1,1 2 2 2 4,0 6,0 7 6,0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Max 83,0 dB(8,8),0 dB(8,0),0,3 st.,0,0,3 st.,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	Max 83,0 dB(8,4) db (1,0) db (Max 83,0 dB (8,0	max 83,0 d8 (8,0 0,0,3) d 4,0 d 6,0	Max 83, 83, 83, 83, 83, 83, 83, 83, 83, 83,	max 83,0 d8 (8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	Max 83,0 dg8 (8,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
ф		dB(A)	dB(A)	4B(A)	dB(A) -8 0,	dB(A)	dB(A)	dB(A)	dB(A)	dB(A) -14142222222323232323232	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	BB(A)	(B(A))	(B(A))	(B(A))	BB(A)	(B(A))	BB(A)	BB(A)	BB(A)	BB(A)	BB(A)	BB(A)
dB dB		LrN 29,8	LrN 29,8 1 -0,2	LrN 29,8 1 -0,2 8 -0,2	LrN 29,8 1 -0,2 8 -0,2 1 0,2	LrN 29,8 1 -0,2 8 -0,2 4 0,2	LrN 29,8 1 -0,2 8 -0,2 1 0,2 9 -0,4	LrN 29,8 1 -0,2 8 -0,2 1 0,2 4 0,2 9 -0,4 7 -0,4	LrN 29,8 -0,2 1 0,2 4 0,2 9 -0,4 7 -0,4 5 -0,4 6 -0,4 7 -0,4 6 -0,2 7 -0,4 6 -0,2 7 -0,4 7 -0,4 6 -0,2 7 -0,4 7 -0,4 8 -0,4 9 -0,2 9 -0,4 9 -0,4	LrN 29,8 1 -0,2 1 0,2 9 -0,4 7 -0,4 6 -0,2 9 -0,4 9 -0,4 9 -0,4	LrN 29,8 8 -0,2 4 0,2 9 -0,4 7 -0,4 5 -0,4 6 0,0	LrN 29,8 8 -0,2 8 -0,2 9 -0,4 5 -0,4 6 0,0 6 0,0	LrN 29,8 8 -0,2 9 -0,4 7 -0,4 9 -0,4 9 -0,0 6 0,0 8 -0,2 9 -0,4 9 -0,4 9 -0,4 9 -0,4 9 -0,6 9 -0,	LrN 29,8 1 -0,2 4 0,2 9 -0,4 9 -0,4 9 -0,0 6 0,0 6 0,0 8 -0,2 9 -0,4 9 -0,4 9 -0,6 9 -0,6	LrN 29,8 1 - 0,0 1 - 0,0 2 - 0,4 2 - 0,4 3 - 0,4 6 0,0 6 0,0 6 0,0 7 - 0,4 8 - 0,2 9 0,2 9 0,0 9 0,0	LrN 29,8 1 - 0,0 2 - 0,4 5 - 0,4 6 0,0 6 0,0 6 0,0 6 0,0 7 - 0,4 8 1 - 0,2 6 0,0 6 0,0 7 - 0,4 8 1 - 0,2 9 1 - 0,4 9	LrN 29,8 8 -0,2 9 -0,4 7 -0,4 9 -0,4 9 -0,4 9 -0,0 0 0,0 0 0 0 0,0 0 0 0 0,0 0 0 0 0,0 0 0 0,0 0 0 0 0 0,0 0 0 0 0 0,0 0 0 0 0 0,0 0 0 0 0 0 0,0 0 0 0 0 0 0,0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LrN 29,8 8 - 0,02 9 - 0,4 9 - 0,4 9 - 0,4 9 - 0,4 9 - 0,0 9 - 0,4 9 - 0,0 9	LrN 29,8 8 -0.0,2 1 -0,4 4 -0,2 6 -0,4 6 -0,4 6 -0,0 8 -0,2 9 -0,4 9 -0,4 9 -0,4 9 -0,6 9	LrN 29,8 1 1 2 9,8 1 0,2 2 2 0,0 4 2 0,0 6 3 0,0 6 4 0,0 6 6 0,0 0 6 0,0 0 7 0,0 4 8 0,0 6 8 0,0 6 9 0,0 6	LrN 29,8 1 - 0,2 2 - 0,4 4 - 0,2 6 - 0,0 6 0 0,0 6 0 0,0 7 - 0,4 8 1 - 0,4 9 1 - 0,4 9 2 1 - 0,4 9 2 1 - 0,4 9 3 1 - 0,4 9 3 1 - 0,4 9 1 - 0	LrN 29,8 8	LrN 29,88 1 1 0,02 0 0,0 0 0,0 0 0 0 0 0,0 0 0 0 0 0,0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LRN 29,88 1 1 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LRN 29,88 1 1 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LRN 29,88	LRN 29,88 1 1 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	LRN 29,88 1
\dashv		LrT 55,4 dB(A)	55,4 dB 0	55,4 dB 0	55,4 dB 0 0 0	0 0 0 0 0	55,4 dB 0 0 0 0 0	55,4 dB 0 0 0 0 0 0	55,4 dB 0 0 0 0 0 0 0	55,4 dB 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4, 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4, 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4, 625, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4, 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 dB		€	€ 0.	€ 0, 0,	€ 0, 0, 0,	€ 0, 0, 0, 0,	(A) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	(A) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	(A) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	(A) 0,0 0,0 0,0 0,0 0,0 0,0	(A) 0,0,0 0,0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)
mΙ		v) RW,N,max 65 dB	170	175 1	173 1- 72	ווט לי וע ע	100 1- 10 10 10	10 7 0 0 0 0	10 7 9 9 9 9 9						9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	10 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10 / 0 0 0 0 0 0 0 0 0 4 0 4 0 0 0 0 7 7 7	10 7 0 0 0 0 0 0 0 0 0 4 0 4 0 0 0 0 7 7 7	10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
dB(A) dl		RW,T,max 90 dB(A)	,max 90 dB(A)	,max 90 dB(A) 89,1 5 56,2 4	,max 90 dB(A) 89,1 56,2 4 75,0 7	89,1 E 89,2 A 4 75,0 7 75,0 7 7	89,1 E	89,1 56,2 4 75,0 7 7 75,0 7 84,0 6 8 83,7 6 6	max 90 dB(A) 89,1 56,2 4 75,0 7 75,0 7 84,0 83,3 83,3	max 90 dB(A) 89,1 56,2 75,0 77,0 75,0 78,3 83,3 68,3	89,1 E 89,1 F 56,2 A 75,0 A 75,0 A 75,0 A 75,0 A 75,0 A 75,0 A 78,2 A 78,2 A 75,0 A 75	89,1 E 89,1 F 6 84,0 75,0 7 7 83,3 6 83,3 6 75,0 7 7 75,0 7 7 7 75,0 7 7 7 75,0 7 7 7 75,0 7 7 7 75,0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	max 90 dB(A) 89,1 56,2 75,0 75,0 75,0 76,83,7 83,3 66,83,3 76,0 77,0 75,0 77,0	max 90 dB(A) 89,1 56,2 75,0 75,0 75,0 75,0 76,0 78,2 75,0 75,0 75,0 75,0 75,0 75,0 75,0 75,0	89,1 E 89,1 E 89,1 F 6 8 8 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	89,1	Max 90 dB(A) 56,2 75,0 75,0 75,0 75,0 78,2 75,0 75,0 77,0 75,0	Max 90 dB(A) 56,2 75,0 75,0 75,0 75,0 75,0 76,0 77,0 76,0 77,0 76,0 77,0 77,0 77,0 80,0 80,0 80,0 80,0 80,0 80,0 80,0 80,0 80,0	Max 90 dB(A) 56,2 75,0 75,0 75,0 78,2 75,0 76,0 77,0 80,0 80,0 80,0 80,0 80,0 74,3	Max 90 dB(A) 56,2 75,0 75,0 75,0 75,0 76,0 78,2 75,0 77,0 80,0	Max 90 dB(A) 56,2 75,0 75,0 75,0 75,0 76,2 83,3 68,3 75,0 77,0 80,0 80,0 74,3 68,2 68,2	Max 90 dB(A) 56,2 75,0 75,0 75,0 76,2 83,3 68,3 80,0 80,0 80,0 68,2 71,0 68,2 68,2	Max 90 dB(A) 56,2 75,0 75,0 75,0 75,0 76,0 77,0 83,3 80,0 80,0 80,0 74,3 68,2 74,3 68,2 68,2	Max 90 dB(A) 56,2 75,0 75,0 75,0 76,2 78,3 83,3 68,3 78,0 77,0 77,0 77,0 68,2 58,0 68,2 68,2	Max 90 dB(A) 56,2 75,0 75,0 75,0 77,0 77,0 77,0 77,0 74,3 68,2 74,3 68,2 74,3 68,2 75,0 77,0 68,2 77,0 68,2 77,0 68,2 77,0 68,2	Max 90 dB(A) 56,2 75,0 75,0 75,0 77,0 77,0 80,0 80,0 68,2 74,3 68,2 68,2 74,3 68,2 74,0 68,2 75,0 77,0 68,2 77,0 68,2 77,0 68,2 77,0 68,2	Max 90 dB(A) 56,2 75,0 75,0 75,0 76,2 83,3 83,3 80,0 80,0 68,2 74,3 68,2 74,3 68,2 74,3 68,2 77,0 68,2 77,0 68,2 77,0 68,2 77,0 68,2 77,0 68,2 77,0 68,2 77,0 68,2 77,0 77,0 77,0 77,0 77,0 77,0 77,0 77,0 77,0 77,0 88,7 88,7 88,7 88,7 88,7 88,7	Max 90 dB(A) 89,1 75,0 75,0 75,0 75,0 76,0 77,0 80,0
		4) RW,N 45 dB(A)																										
m,m²	*/C' CO H :::	RW, I 60 dB(A)	W,T 60 dB(A)	2345 7	W, I 60 db(A) 2345 7	2345 7	2345 7 7 125	2345 7 7 125 116	2345 7 7 125 116 117	2345 7 7 125 116 107 1625	2345 7 7 125 116 107	2345 2345 7 7 116 107 1625	2345 7 7 116 116 116 1625	2345 7 7 116 116 1625 98	2345 7 7 116 107 1625 260	2345 2345 7 7 116 107 1625 260 288	2345 2345 7 7 116 1107 1625 260 288 1090	2345 2345 7 7 116 107 1625 260 288 1090 108	2345 7 7 116 116 117 1625 260 288 1090 108	2345 125 116 116 116 107 1625 1625 198 260 288 1090 108 1766	2345 7 7 116 116 107 1625 260 288 1090 1090 1766	2345 7 7 116 116 107 1625 1625 188 1090 108 63 1766	2345 125 116 107 1625 1625 198 1090 1766 03	2345 125 116 116 116 11625 1625 1090 108 63 1766	2345 125 116 116 1107 1625 163 1766 1 1766 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2345 2345 116 116 1107 1108 288 288 11090 1108 63 1766 1766 5	2345 2345 7 7 116 1107 1090 1090 108 63 1766 1766 1766 5	2345 2345 7 7 116 107 108 63 1766 108 5 5 5
		ว ว	כ י	כ מ	_	_	_	_	_	_	_	_	Etc O	e bluft 1 bluft 2 nsatz	e e e bluft 1 bluft 2 nsatz en Leerlau	e e bluft 1 bluft 2 nsatz	e e bluft 1 bluft 2 nsatz en ch	e bluft 1 bluft 2 nsatz en ch	e bluft 1 bluft 2 nsatz ch ch	e e bluft 1 bluft 2 nsatz ch ch re nacht	e e bluft 1 bluft 2 nsatz ch re nacht	e bluft 1 bluft 2 bluft 2 nsatz ch re nacht ieren Rangier	bluft 1 bluft 2 bluft 2 ch ch re nacht re nacht Rangier	e bluft 1 bluft 2 bluft 2 ch ch re nacht ieren Rangier	ift 1 ift 2 atz atz en nacht icht 5	e bluft 1 bluft 2 bluft 2 ch ch re nacht re nacht reracht eerlicht 5 eerlicht 5	e bluft 1 bluft 2 bluft 2 bluft 2 ch ch re nacht re nacht eerlicht 5 eerlicht 4 eerlicht 3	e bluft 1 bluft 2 bluft 2 ch ch re nacht re nacht eerlicht 5 eerlicht 3 eerlicht 3

Ergebnisnr.: 3 SoundPLAN 8.1

Heine + Jud - Ingenieurbüro für Umweltakustik

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

Quelle	l oder S	S	: -	R'w	Γw	N, T	조	주	۸ 0	Adiv	Agr	Abar	Aatm	dLrefl	Ls	dLw(LrT)	dLw(LrN)	ZR(LrT)	ΓΉ	L' L'
	m,m²	Ε	dB(A)	dB	dB(A)	dB(A)	dB	ф	dB	ф	dB	dB	dB	dB	dB(A)	dB	qB	dB	dB(A)	dB(A)
Fahrzeughalle Tore tags	245	109	0'52	0	6,86	75,0	0,0	0,0	0	-51,8	6,0	-23,7	9'0-	0,4	23,6	-3,0		0,0	20,5	
Funktionstest Kleingeräte	1361	122			100,0	2'89	0,0	0,0	0	-52,7	0,5	-24,1	-1,8	0,4	22,2	-15,1		0,0	13,1	
Kommunikation tags	1039	115			80,0	49,8	2,0	0,0	0	-52,2	8,0-	-23,5	-0,5	0,4	3,4	-12,0		0,0	-3,6	
Lkw Fahrten Waschhalle	86	29			82,9	63,0	0,0	0,0	0	-46,4	-0,3	-18,4	-0,5	7,3	25,0	6,4		0,0	20,7	
Lkw Rangieren Einsatz tags	1625	111			85,9	53,8	0,0	0,0	0	-51,9	-0,4	-22,4	-0,5	0,2	11,0	4 ε,		0,0	6,7	
Transporter Fahrten Waschhalle	86	26			72,9	53,0	0,0	0,0	0	-46,4	-0,3	-18,4	-0,5	7,3	15,0	0,6-		0,0	6,0	
Waschhalle Tor Ost	34	2	83,0	0	98,3	83,0	0,0	3,0	0	-47,1	6,0	-19,6	<u>-</u> ,	11,9	43,3	-6,0		0,0	40,3	
Waschhalle Tor West	34	83	83,0	0	98,4	83,0	0,0	3,0	0	49,4	6,0	-24,1	-2,5	0,1	23,3	-6,0		0,0	20,2	
Werkstatt	34	79	0,08	0	95,4	0,08	0,0	0,0	0	-48,9	1,0	-24,6	4,1-	0,0	21,3	0,6-		0,0	12,3	
ZwLager Abkippen	1456	32			89,2	9,75	8,0	0,0	0	0,14	-0,2	-9,7	-0,1	0,5	38,7	<u>,</u>		0,0	47,7	
ZwLager Lkw-Fahrten	111	40			83,4	63,0	0,0	0,0	0	-43,1	-0,1	-5,5	-0,2	0,5	35,0	1,1		0,0	36,1	
ZwLager Lkw-Rangieren	2876	49			87,4	52,8	0,0	0,0	0	-44,9	-0,2	-6,5	-0,5	9,0	36,2	1,1		0,0	37,3	
ZwLager Radlader	2876	49			107,0	72,4	0,0	0,0	0	-44,9	-0,2	9,9-	-0,3	9,0	55,5	-2,0		0,0	53,4	
ZwLager Radlader-RFW	2876	49			104,0	69,4	0,0	0,0	0	-44,9	0,5	-8,0	-0,8	6,0	51,7	-5,1		0,0	46,7	

Heine + Jud - Ingenieurbüro für Umweltakustik

_
_
A
_
•
4
_
='
-10
_
_
Anlage
_
•
_

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

LrN	dB(A)		33,5	31,7	31,7	30,5	30,0	26,0	25,1	24,0	20,4	18,2	17,5	16,7	13,6	12,2	10,7	10,3	6,3	8,8	8,0	5,9	-5,7	-6,3	-7,5	9'2-	8,8	9,6-	
ΓΊ	dB(A)		31,1	29,3	29,1		27,6	29,6	22,7	23,3	21,0	15,8	15,1	14,3	17,2	8,6		14,0	12,9	12,4	11,7	9'6	-2,1	-2,7	-3,8	4,0	-5,1	-6,0	15,5
ZR(LrT)	dB		3,6	3,6	3,6		3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6		3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6
dLw(LrN)	dB	(A)	0,0	0,0	-3,8	8,4	0,0	0,0	14,0	-17,8	-3,0	0,0	3,0	0,0	0,0	3,0	-3,0	0,0	-6,0	0,0	0,0	-3,0	-3,0	-3,0	0,0	-3,0	-3,0	-3,0	
dLw(LrT)	dB	LT,max 60,1 dB(A) LN,max 53,8 dB(A)	-6,0	0'9-	-10,0		0,9-	0,0	8,0	-22,0	-6,0	-6,0	-3,0	0,9-	0,0	-3,0		0,0	-6,0	0,0	0,0	-3,0	-3,0	-3,0	0,0	-3,0	-3,0	-3,0	-18,1
Ls	dB(A)	3(A) LN,	33,5	31,7	35,5	25,7	30,0	26,0	1,1	41,8	23,4	18,2	14,5	16,7	13,6	9,2	13,7	10,3	15,3	8,8	8,0	6,8	-2,7	-3,3	-7,5	-4,6	-5,8	9'9-	30,0
dLrefl	dB	ax 60,1 dE	0,3	0,2	0,4	6,0	0,2	0,0	0,0	0,3	1,5	0,3	2,0	0,3	0,0	3,2	0,2	0,0	0,0	1,7	4,1	0,2	0,0	0,0	1,5	0,0	0,0	0,2	7,8
Aatm	dB	A) LT,ma	-0,5	-0,5	-0,4	-0,5	9,0-	-0,2	-0,4	-0,4	-1,2	9,0-	<u>۲</u> ,	-0,5	-0,1	<u>-</u>	-0,1	-0,5	-0,2	-0,3	-0,3	0,0	-0,1	-0,1	-0,2	-0,1	-0,1	-0,1	-0,4
Abar	dB	39,4 dB(,	-1,2	-1,7	-3,9	-2,7	-2,3	-6,5	0,0	-3,1	0,0	-3,1	-1,1	-2,4	-16,2	-4,5	-14,6	-6,7	-16,1	-15,7	-15,4	-12,7	-16,2	-14,7	-15,9	-14,3	-14,1	-13,9	-17,1
Agr	dB	3(A) LrN	-0,2	-0,3	-0,5	-0,5	-0,3	6,0	0,0	-0,2	8,0-	-0,3	-0,4	-0,2	6,0	-0,4	8,0	6,0	8,0	8,0	8,0	6,0	8,0	8,0	8,0	2,0	2,0	2,0	-0,5
Adiv	dB	LrT 46,8 dB(A) LrN 39,4 dB(A)	-48,8	-49,7	-49,2	-49,4	-50,4	-43,2	-44,7	-48,8	-55,0	-51,0	-55,7	-48,8	-45,9	-56,4	-46,9	-43,7	-49,2	-52,7	-53,5	-48,6	-45,0	-47,0	-51,6	-48,7	-50,1	-51,3	-53,9
Š	dB	x 60 dB(A) L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
첫	ВВ	I,max 60	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
조	ф	A) RW,N,ma	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
L'w	dB(A)	RW,T,max 85 dB(A)	63,0	63,0	55,3	46,1	63,0	75,0	47,5	6,69	54,4	53,0	53,0	35,7	75,0	43,4	54,0	0,09	0,08	75,0	75,0	38,8	51,0	51,0	58,0	51,0	51,0	51,0	66,1
Lw	dB(A)	RW,T,m	84,0	83,7	89,1	78,2	83,3	75,0	56,2	94,0	0,62	72,9	71,0	68,2	75,0	68,2	74,3	0,09	80,0	75,0	75,0	69,2	57,8	8'29	58,0	8'29	57,8	8,73	94,0
Ä,	ф	RW,N 40 dB(A)															15					35	21	21		21	21	21	
ij	dB(A)																75,0					75,0	75,0	75,0		75,0	75,0	75,0	
S	ш	RW,T 55 dB(A)	78	98	8	83	93	4	49	78	158	100	173	11	26	187	63	43	8	122	134	9/	20	63	108	11	6	104	139
I oder S	m,m²	N RW,T	125	116	2345	1625	107		7	260	288	86	63	1766		300	108					1090	2	2		2	2	2	617
Quelle		Kleemattstraße 11 O 1.0G	Lkw Fahrten 1	Lkw Fahrten 2	Parkplatz Einsätze	Lkw Rangieren Einsatz nachts	Lkw Fahrten 3	RLT Anlage 6	Pkw Fahrten	Einsatzfahrzeuge Leerlauf	DRK Parkplatz	Transporter Fahrten	DRK Fahrten	Transporter Rangieren	RLT-Anlage 4	DRK Transporter Rangieren	Fahrzeughalle Tore nachts	Wärmepumpe	Ausblasöffnung Abgasabsaugung	Deflektorhaube Abluft 2	Deflektorhaube Abluft 1	Fahrzeughalle Dach	Fahrzeughalle Oberlicht 1	Fahrzeughalle Oberlicht 2	Klimaaußengerät	Fahrzeughalle Oberlicht 3	Fahrzeughalle Oberlicht 4	Fahrzeughalle Oberlicht 5	Einsatzfahrzeuge Leerlauf Ost

Ergebnisnr.: 3

Heine + Jud - Ingenieurbüro für Umweltakustik

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

Quelle	I oder S	S	ij	R'w	Γw	L'w	조	Ā	Š O	Adiv	Agr	Abar	Aatm	dLrefl	Ls	dLw(LrT)	dLw(LrN)	ZR(LrT)	F	Ľ.
	m,m²	ш	dB(A)	dB	dB(A)	dB(A)	ф	ф	dB	ф	ф	dB	ф	dB	dB(A)	dB	qB	dB	dB(A)	dB(A)
Fahrzeughalle Tore tags	245	92	75,0	0	6'86	75,0	0,0	0,0	0	-48,6	9,0	-17,1	-0,2	2,1	35,7	-3,0		3,6	36,3	
Funktionstest Kleingeräte	1361	72			100,0	68,7	0,0	0,9	0	-48,1	0,4	-2,3	-1,2	6,0	49,2	-15,1		3,6	43,8	
Kommunikation tags	1039	74			80,0	49,8	2,0	0,0	0	-48,4	-0,5	-3,7	-0,3	6,0	27,4	-12,0		3,6	23,9	
Lkw Fahrten Waschhalle	86	144			82,9	63,0	0,0	0,0	0	-54,2	-0,5	-11,5	8,0-	2,6	18,6	4 ε,		3,6	18,0	
Lkw Rangieren Einsatz tags	1625	83			85,9	53,8	0,0	0,0	0	-49,4	-0,2	-2,7	-0,5	0,3	33,4	4°,3		3,6	32,8	
Transporter Fahrten Waschhalle	86	144			72,9	53,0	0,0	0,0	0	-54,2	-0,5	-11,5	8,0-	2,6	9,8	0'6-		3,6	3,2	
Waschhalle Tor Ost	34	132	83,0	0	98,3	83,0	0,0	3,0	0	-53,4	6,0	-21,9	-2,0	0,1	21,9	-6,0		3,6	22,5	
Waschhalle Tor West	34	124	83,0	0	98,4	83,0	0,0	3,0	0	-52,9	6,0	-18,6	-1,2	2,8	29,4	-6,0		3,6	30,0	
Werkstatt	34	131	0,08	0	95,4	0,08	0,0	0,0	0	-53,3	1,0	-20,5	-1,6	0,1	20,9	0,6-		3,6	15,5	
ZwLager Abkippen	1456	202			89,2	9,73	8,0	0,0	0	-57,1	-0,8	-17,1	-0,5	4,0	1,4	۲,		3,5	26,7	
ZwLager Lkw-Fahrten	17	197			83,4	63,0	0,0	0,0	0	-56,9	-0,4	-17,2	-0,5	6,0	4,6	1,1		3,5	14,0	
ZwLager Lkw-Rangieren	2876	206			87,4	52,8	0,0	0,0	0	-57,3	-0,3	-10,5	6,0-	4,0	18,8	۲,		3,5	23,4	
ZwLager Radlader	2876	206			107,0	72,4	0,0	0,0	0	-57,3	-0,4	-10,6	<u>-,</u>	4,0	38,1	-2,0		3,4	39,4	
ZwLager Radlader-RFW	2876	206			104,0	69,4	0,0	0,0	0	-57,3	9,0	-12,2	-2,5	0,5	33,1	-5,1		3,4	31,4	

Heine + Jud - Ingenieurbüro für Umweltakustik

,
$\overline{}$
, ,,
_
Anlage
. <
ı
ı
ı
ı
ı
ı
ı
ı
ı
ı
ı
ı
ı

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

r S	dB(A)		34,3	32,8	31,6	31,4	31,2	26,0	24,7	23,2	21,5	20,5	17,8	17,4	12,5	11,7	10,9	7,5	9,9	6,5	5,8	4,5	-7,4	-8,5	8,6-	-10,0	-11,3	-12,1	
LT	dB(A)		31,9	30,5	29,5		28,7	25,4	22,3	26,8	22,1	18,1	15,4	15,0	10,1		14,5	1,	10,2	10,2	9,6	8,1	-3,8	6,4	-6,2	-6,4	-7,7	-8,5	14,5
ZR(LrT)	dB		3,6	3,6	3,6		3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6		3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6
dLw(LrN)	dB	()	0,0	0,0	0,0	8,	-3,8	-17,8	14,0	0,0	-3,0	0,0	3,0	0,0	3,0	-3,0	0,0	0,0	-6,0	0,0	0,0	-3,0	-3,0	-3,0	0,0	-3,0	-3,0	-3,0	
dLw(LrT)	dB	LT,max 59,0 dB(A) LN,max 53,6 dB(A)	-6,0	-6,0	-6,0		-10,0	-22,0	8,0	0,0	-6,0	-6,0	-3,0	-6,0	-3,0		0,0	0,0	-6,0	0,0	0,0	-3,0	-3,0	-3,0	0,0	-3,0	-3,0	-3,0	-18,1
Ls	dB(A)	۸) LN,m	34,3	32,8	31,6	26,6	35,0	43,8	10,8	23,2	24,5	20,5	14,8	17,4	9,5	14,7	10,9	2,2	12,6	6,5	2,8	2,2	4,4	-5,5	8,6-	-7,0	-8,3	-9,1	28,9
dLrefl	dB	59,0 dB(/	6,0	0,2	0,2	6,0	4,0	0,2	6,0	0,0	4,1	0,2	2,0	6,0	3,2	0,2	0,0	0,0	0,0	2,4	2,1	0,2	0,0	0,0	2,1	0,0	0,0	6,0	7,9
Aatm	dB		9,0-	9,0-	-0,7	9,0-	-0,4	-0,5	-0,4	-0,5	-, L,	-0,7	<u></u>	-0,5	-1,2	-0,1	-0,5	-0,5	-0,5	-0,3	-0,3	0,0	-0,1	-0,1	-0,3	-0,1	-0,1	-0,1	-0,4
Abar	dB	LrT 46,9 dB(A) LrN 40,0 dB(A)	-0,3	-0,3	-0,4	-1,5	4,5	-0,7	0,0	-8,3	0,0	-0,4	<u>L</u>	4,1-	-4,5	-13,0	-17,9	-8,5	-17,8	-17,5	-17,2	-14,0	-16,3	-15,2	-17,7	-14,8	-14,6	-14,4	-18,4
Agr	dB	۸) LrN 4	-0,4	-0,4	-0,5	-0,4	-0,1	-0,4	-0,3	0,2	0,0	-0,5	-0,5	-0,4	-0,5	0,4	0,1	0,2	-0,1	-0,5	-0,5	8,0	-0,7	6,0-	-0,2	-,1	-1,2	-1,3	-0,3
Adiv	dB	46,9 dB(/	-48,8	-49,6	-50,4	49,4	49,4	-48,8	-45,1	-43,5	-54,9	-51,0	-55,6	-48,7	-56,3	-47,0	-46,1	-44,0	-49,3	-52,8	-53,6	-48,7	-45,2	-47,2	-51,7	-48,8	-50,2	-51,4	-53,9
Ko	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ϋ́	dB	nax 60 dB(A)	0'0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
₹	dB	RW,N,max	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
L'w	dB(A)	85 dB(A)	63,0	63,0	63,0	46,1	55,3	6'69	47,5	75,0	54,4	53,0	53,0	35,7	43,4	54,0	75,0	0,09	80,0	75,0	75,0	38,8	51,0	51,0	58,0	51,0	51,0	51,0	66,1
Γw	dB(A)	RW,T,max 85 dB(A)	84,0	83,7	83,3	78,2	89,1	94,0	56,2	75,0	79,0	72,9	71,0	68,2	68,2	74,3	75,0	0,09	80,0	75,0	75,0	69,2	8'29	8,73	58,0	8,73	8'29	8,73	94,0
R'w	dB															15						35	21	21		21	21	21	
ij	dB(A)	RW,N 40 dB(A)														75,0						75,0	75,0	75,0		75,0	75,0	75,0	
S	ш	55 dB(A)	78	82	93	83	83	11	51	42	156	100	170	11	184	63	25	45	82	123	134	12	51	42	109	8/	9	104	140
l oder S	m,m²	RW,T	125	116	107	1625	2345	260	7		288	86	63	1766	300	108						1090	5	5		2	2	22	617
Quelle		Kleemattstraße 11 W EG N	Lkw Fahrten 1	Lkw Fahrten 2	Lkw Fahrten 3	Lkw Rangieren Einsatz nachts	Parkplatz Einsätze	Einsatzfahrzeuge Leerlauf	Pkw Fahrten	RLT Anlage 6	DRK Parkplatz	Transporter Fahrten	DRK Fahrten	Transporter Rangieren	DRK Transporter Rangieren	Fahrzeughalle Tore nachts	RLT-Anlage 4	Wärmepumpe	Ausblasöffnung Abgasabsaugung	Deflektorhaube Abluft 2	Deflektorhaube Abluft 1	Fahrzeughalle Dach	Fahrzeughalle Oberlicht 1	Fahrzeughalle Oberlicht 2	Klimaaußengerät	Fahrzeughalle Oberlicht 3	Fahrzeughalle Oberlicht 4	Fahrzeughalle Oberlicht 5	Einsatzfahrzeuge Leerlauf Ost

Ergebnisnr.: 3

Heine + Jud - Ingenieurbüro für Umweltakustik

SoundPLAN 8.1

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

Quelle	I oder S	S	ij	R'w	Γw	L'w	조	노 -	\$	Adiv	Agr	Abar	Aatm	dLrefl	l's	dLw(LrT)	dLw(LrN)	ZR(LrT)	r.	Ę.
	m,m²	Е	dB(A)	dB	dB(A)	dB(A)	dB	ф	dB	ф	dB	dB	dB	ф	dB(A)	ф	dB	ф	dB(A)	dB(A)
Fahrzeughalle Tore tags	245	92	75,0	0	6'86	75,0	0,0	0,0	0	-48,6	0,2	-15,3	-0,3	1,6	36,5	-3,0		3,6	37,1	
Funktionstest Kleingeräte	1361	71			100,0	2'89	0,0	0,0	0	-48,1	0,4	-1,3	6,1-	6,0	20,0	-15,1		3,6	9,44	
Kommunikation tags	1039	74			80,0	49,8	2,0	0,0	0	-48,4	-0,8	-2,1	-0,4	0,2	28,5	-12,0		3,6	25,1	
Lkw Fahrten Waschhalle	86	144			82,9	63,0	0,0	0,0	0	-54,2	-0,3	-8,0	-1,0	1,2	20,6	4,3		3,6	20,0	
Lkw Rangieren Einsatz tags	1625	83			85,9	53,8	0,0	0,0	0	-49,4	-0,4	-1,5	9,0-	0,3	34,3	4,3		3,6	33,7	
Transporter Fahrten Waschhalle	86	144			72,9	53,0	0,0	0,0	0	-54,2	-0,3	0,8-	-1,0	1,2	10,6	0'6-		3,6	5,2	
Waschhalle Tor Ost	34	132	83,0	0	98,3	83,0	0,0	3,0	0	-53,4	1,0	-22,2	-2,2	0,1	21,5	-6,0		3,6	22,1	
Waschhalle Tor West	34	124	83,0	0	98,4	83,0	0,0	3,0	0	-52,9	6,0	-16,5	-1,2	2,4	31,1	-6,0		3,6	31,7	
Werkstatt	34	131	0,08	0	95,4	0,08	0,0	0,0	0	-53,4	<u></u>	-17,8	-1,6	0,0	23,8	0,6-		3,6	18,4	
ZwLager Abkippen	1456	203			89,2	9,75	8,0	0,0	0	-57,2	-0,7	-19,1	9,0-	0,5	12,1	1,1		3,5	24,7	
ZwLager Lkw-Fahrten	111	199			83,4	63,0	0,0	0,0	0	-57,0	-0,2	-19,0	-0,5	2,2	0,6	1,1		3,5	13,6	
ZwLager Lkw-Rangieren	2876	208			87,4	52,8	0,0	0,0	0	-57,3	-0,1	-14,8	-0,7	6,0	15,3	1 ,		3,5	19,9	
ZwLager Radlader	2876	208			107,0	72,4	0,0	0,0	0	-57,3	-0,2	-15,0	8,0-	8,0	34,5	-2,0		3,4	35,8	
ZwLager Radlader-RFW	2876	208			104,0	69,4	0,0	0,0	0	-57,3	6,0	-17,5	-2,1	1,2	29,1	-5,1		3,4	27,5	

Heine + Jud - Ingenieurbüro für Umweltakustik

A15
Anlage
•

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

LrN	dB(A)		33,5	32,3	31,9	31,1	25,6	25,6	24,3	22,5	21,7	20,1	20,0	19,2	18,3	17,7	17,5	11,9	11,3	8,6	3,5	3,3	2,0	0,5	9,0-	-1,5	-1,8	-3,1	
占	dB(A)		31,1	29,9		28,7	25,0	29,2	21,7		25,4	17,7	17,6	22,8	21,9	15,3	21,1	12,6	14,9	13,4	1,1	6,9	2,6	4,1	3,1	2,1	4,5	9,0	11,2
ZR(LrT)	dB		3,6	3,6		3,6	3,6	3,6	3,6		3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6
dLw(LrN)	dB		0,0	0,0	8,4	0,0	-17,8	0,0	-3,8	-3,0	-6,0	0,0	14,0	0,0	0,0	0,0	0,0	-3,0	-3,0	0,0	3,0	0,0	-3,0	-3,0	-3,0	-3,0	3,0	-3,0	
dLw(LrT)	dB	51,9 dB(A)	-6,0	0'9-		-6,0	-22,0	0,0	-10,0		0,9-	0,9-	8,0	0,0	0,0	0,9-	0,0	0,9-	-3,0	0,0	-3,0	0,0	-3,0	-3,0	-3,0	-3,0	-3,0	-3,0	-18,1
Ls	dB(A)	LN,max 5	33,5	32,3	27,1	31,1	43,4	25,6	28,1	25,5	27,8	20,1	0,9	19,2	18,3	17,7	17,5	14,9	14,3	8,6	9,0	3,3	2,0	3,5	2,4	1,5	4,8	-0,1	25,7
dLrefl	dB	5 dB(A)	9,0	0,5	0,5	6,0	0,4	0,0	0,1	0,0	0,0	0,4	9,0	0,0	0,0	9,0	0,0	9,0	0,0	0,0	8,0	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,1
Aatm	dB	LT,max 60,	9,0-	9,0-	9,0-	-0,7	9,0-	6,0-	-0,5	-0,4	-1,0	-0,7	9,0-	4,1-	-1,5	9,0-	-0,5	-0,1	-0,5	-1,0	-0,4	-1,3	-0,1	-0,5	-0,5	-0,5	-0,5	-0,1	-0,5
Abar	dB	dB(A) L	-0,2	-0,2	-0,1	-0,3	0,0	-2,0	-8,2	0,0	-1,2	6,0-	0,0	-1,6	-1,7	-0,1	-9,2	-11,8	-5,1	-2,1	-16,9	4,1-	0,4	4,5	4,5	4,5	-18,7	-10,4	-12,4
Agr	dB	LrN 39,3	-0,2	-0,2	-0,5	-0,3	-0,2	1,1	-0,1	2,0	1,0	-0,3	-0,2	1,0	1,0	-0,2	1,0	-0,2	1,2	1,1	-0,4	1,0	1,1	1,1	1,1	1,1	-0,4	1,	-0,4
Adiv	dB	,7 dB(A)	-50,1	-50,7	-50,6	-51,3	-50,1	-47,6	-52,3	-49,1	-51,0	-51,9	-49,9	-53,9	-54,6	-50,1	-49,2	-52,6	-50,8	-48,2	-53,6	-53,0	-49,7	-50,7	-51,7	-52,7	-54,4	-48,5	-55,1
Ko	dB	LrT 51	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ā	ф	60 dB(A)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
조	dB	RW,N,max 60	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
L'w	dB(A)		63,0	63,0	46,1	63,0	66)	75,0	55,3	54,0	0,08	53,0	47,5	75,0	75,0	35,7	75,0	54,4	38,8	0,09	53,0	58,0	51,0	51,0	51,0	51,0	43,4	51,0	66,1
Γw	dB(A)	RW,T,max 85 dB(A)	84,0	83,7	78,2	83,3	94,0	75,0	89,1	74,3	80,0	72,9	56,2	75,0	75,0	68,2	75,0	79,0	69,2	0,09	71,0	58,0	57,8	57,8	57,8	8,73	68,2	8,73	94,0
A'W	dB									15									35				21	21	21	21		21	
ij	dB(A)	RW,N 40 dB(A)								75,0									75,0				75,0	75,0	75,0	75,0		75,0	
S	ш		06	97	92	104	06	29	116	8	100	11	88	140	151	06	8	120	86	72	134	126	98	- 26	109	121	148	75	160
l oder S	m,m²	RW,T 55 dB(A)	125	116	1625	107	260		2345	108		86	7			1766		288	1090		63		2	2	2	2	300	2	617
Quelle		Müßmattstr. 72 3.0G O R	Lkw Fahrten 1	Lkw Fahrten 2	Lkw Rangieren Einsatz nachts	Lkw Fahrten 3	Einsatzfahrzeuge Leerlauf	RLT Anlage 6	Parkplatz Einsätze	Fahrzeughalle Tore nachts	Ausblasöffnung Abgasabsaugung	Transporter Fahrten	Pkw Fahrten	Deflektorhaube Abluft 2	Deflektorhaube Abluft 1	Transporter Rangieren	RLT-Anlage 4	DRK Parkplatz	Fahrzeughalle Dach	Wärmepumpe	DRK Fahrten	Klimaaußengerät	Fahrzeughalle Oberlicht 2	Fahrzeughalle Oberlicht 3	Fahrzeughalle Oberlicht 4	Fahrzeughalle Oberlicht 5	DRK Transporter Rangieren	Fahrzeughalle Oberlicht 1	Einsatzfahrzeuge Leerlauf Ost

Ergebnisnr.: 3

Heine + Jud - Ingenieurbüro für Umweltakustik

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

LrN	dB(A)														
LrT	dB(A)	48,7	44,4	26,0	19,5	34,2	4,8	22,8	42,2	34,9	35,0	21,4	24,8	41,0	32,8
ZR(LrT)	gp	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,5	3,5	3,5	3,4	3,4
dLw(LrN)	gp														
dLw(LrT)	gp 0	-3,0	-15,1	-12,0	-4,3	-4,3	0,6-	-6,0	-6,0	0'6-	7,	7,	7,	-2,0	-5,1
Ls	dB(A)	48,1	49,9	29,4	20,2	34,8	10,2	22,2	41,6	40,3	22,4	16,9	20,3	39,6	34,4
dLrefl	dB	0,0	0,5	0,5	<u>_</u> ,	9,0	<u>+,</u>	0,0	0,2	0,5	0,2	9,0	0,2	0,2	0,2
Aatm	ab S	9,0	-1,6	-0,5	6,0-	9,0-	6,0-	-3,3	4 L	-2,3	-1,0	7,7	-1,0	-1,2	-2,6
Abar	ab S	-0,5	0,0	0,0	-7,5	-0,1	-7,5	-19,2	0,0	0,0	6,9-	-7,6	-7,3	-7,4	-9,1
Agr	gp 0	9,0	0,4	9,0-	-0,4	-0,2	-0,4	6,0	6,0	1,0	6,0-	-0,5	-0,5	-0,5	0,4
Adiv	age 2	-20,6	-49,5	-50,0	-55,1	-50,6	-55,1	-54,5	-53,7	-54,1	-58,2	-58,0	-58,4	-58,4	-58,4
S 6	g ₀	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7 6	ab S	0,0	0,9	0,0	0,0	0,0	0,0	3,0	3,0	0,0	0,0	0,0	0,0	0,0	0,0
조 원	gp 8	0,0	0,0	2,0	0,0	0,0	0,0	0,0	0,0	0,0	8,0	0,0	0,0	0,0	0,0
N, (S	dB(A)	75,0	68,7	49,8	63,0	53,8	53,0	83,0	83,0	0'08	9,73	63,0	52,8	72,4	69,4
Lw	dB(A)	6,86	100,0	80,0	82,9	85,9	72,9	98,3	98,4	95,4	89,2	83,4	87,4	107,0	104,0
W'A 9	dB	0						0	0	0					
Li	dB(A)	75,0						83,0	83,0	0,08					
ω §	E !	32	8	68	160	92	160	150	137	144	229	225	236	236	236
l oder S	m,m	245	1361	1039	86	1625	86	34	34	34	1456	111	2876	2876	2876
Quelle	:	Fahrzeughalle Tore tags	Funktionstest Kleingeräte	Kommunikation tags	Lkw Fahrten Waschhalle	Lkw Rangieren Einsatz tags	Transporter Fahrten Waschhalle	Waschhalle Tor Ost	Waschhalle Tor West	Werkstatt	ZwLager Abkippen	ZwLager Lkw-Fahrten	ZwLager Lkw-Rangieren	ZwLager Radlader	ZwLager Radlader-RFW

Heine + Jud - Ingenieurbüro für Umweltakustik

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

Anlage A17

Quelle	I oder S	S	П	R'w	Γw	L'w	조	KT	Ko /	Adiv /	Agr A	Abar <i>t</i>	Aatm d	dLrefl	Ls d	dLw(LrT)	dLw(LrN)	ZR(LrT)	LrT	Ľ
	m,m²	E	dB(A)	dB	dB(A)	dB(A)	dB	ф	dB	ф	dB	dB	dB	dB	dB(A)	dB	dB	dB	dB(A)	dB(A)
Müßmattstraße 55 7.0G N	RW,T 55	55 dB(A) R	RW,N 40 dB(A)		RW,T,max 85 dB(A)	35 dB(A)	RW,N,max 60	1x 60 dB(A)	LrT	49,4 dB(A)	LrN 36,8	,8 dB(A) L	LT,max 59,	9 dB(A)	LN,max {	51,7 dB(A)				
Lkw Fahrten 1	125	136			84,0	63,0	0,0	0,0		- 23,7					28,9	-6,0	0,0	3,6	26,5	28,9
DRK Parkplatz	288	02			79,0	54,4	0,0	0,0	0		0,0	0,0	-0,5	1,3	31,9	-6,0	-3,0	3,6	29,5	28,8
Lkw Fahrten 2	116	140			83,7	63,0	0,0	0,0		- 23,9					28,7	-6,0	0,0	3,6	26,3	28,7
Lkw Fahrten 3	107	145			83,3	63,0	0,0	0,0	0	-54,2	-0,4	0,0	-1,0	0,3	28,0	-6,0	0,0	3,6	25,6	28,0
Lkw Rangieren Einsatz nachts	1625	139			78,2	46,1	0,0	0,0		- 23,9	-0,4	e,0-	6,0-	0,4	23,1		8,4			27,9
DRK Fahrten	63	82			71,0	53,0	0,0	0,0	0	-49,3	-0,5	9,1-	-0,5	2,0	21,3	-3,0	3,0	3,6	21,9	24,3
RLT Anlage 6		123			75,0	75,0	0,0	0,0	0	-52,8			6,0-		22,3	0,0	0,0	3,6	25,9	22,3
RLT-Anlage 4		135			75,0	75,0	0,0	0,0	0	-53,6		0,0	-1,0	0,0	21,5	0,0	0,0	3,6	25,1	21,5
Einsatzfahrzeuge Leerlauf	260	135			94,0	6,69	0,0	0,0	0	- 23,6	-0,4	-0,3	6,0-	0,4	39,1	-22,0	-17,8	3,6	20,7	21,4
Ausblasöffnung Abgasabsaugung		147			80,0	80,0	0,0	0,0	0	-54,3	1,0		-1,0	0,0	25,6	0,9-	-6,0	3,6	23,2	19,6
Parkplatz Einsätze	2345	171			89,1	55,3	0,0	0,0	0	- 25,7		9,6-	-0,5	0,0	23,1	-10,0	-3,8	3,6	16,7	19,3
Deflektorhaube Abluft 2		181			75,0	75,0	0,0	0,0	0	-56,1	1,0			0,0	18,7	0,0	0,0	3,6	22,3	18,7
Deflektorhaube Abluft 1		192			75,0	75,0	0,0	0,0	0	-26,7				0,0	18,1	0,0	0,0	3,6	21,7	18,1
Transporter Fahrten	86	149			72,9	53,0	0,0	0,0	0	-54,5			-1,0	0,4	17,4	-6,0	0,0	3,6	15,0	17,4
DRK Transporter Rangieren	300	96			68,2	43,4	0,0	0,0	_ _	- 9'09-		-7,5		4,3	13,6	-3,0	3,0	3,6	14,2	16,6
Fahrzeughalle Tore nachts	108	129	75,0	15	74,3	54,0	0,0	0,0	0	-53,2			9,0-	0,0	19,4		-3,0			16,4
Pkw Fahrten		150			56,2	47,5	0,0	0,0		- 24,5			-1,0	0,0	0,3	8,0	14,0	3,6	11,9	14,3
Transporter Rangieren	1766	136			68,2	35,7	0,0	0,0	0	- 23,7				0,4	13,2	-6,0	0,0	3,6	10,8	13,2
Fahrzeughalle Dach	1090	148	75,0	35	69,2	38,8	0,0	0,0	0	-54,4			-0,4	0,0	13,2	-3,0	-3,0	3,6	13,8	10,2
Wärmepumpe		129			0,09	0,09	0,0	0,0	0	-53,2				0,0	8,9	0,0	0,0	3,6	10,5	8,9
Klimaaußengerät		170			58,0	58,0	0,0	0,0	0	-55,6		0,0	<u>-</u>	0,0	2,3	0,0	0,0	3,6	5,9	2,3
Fahrzeughalle Oberlicht 3	2	145	75,0	21	8,73	51,0	0,0	0,0	0	-54,2		-1,2	-0,3	0,0	3,2	-3,0	-3,0	3,6	3,8	0,2
Fahrzeughalle Oberlicht 4	2	154	75,0	21	8,73	51,0	0,0	0,0	0	-54,8		-1,3	-0,3	0,0	2,6	-3,0	-3,0	3,6	3,2	-0,4
Fahrzeughalle Oberlicht 1	2	129	75,0	21	8,73	51,0	0,0	0,0	0	-53,2	_	-3,0	-0,5	0,0	2,5	-3,0	-3,0	3,6	3,1	-0,5
Fahrzeughalle Oberlicht 5	2	164	75,0	21	8,73	51,0	0,0	0,0	0	-55,3	<u></u>	-1,3		0,0	2,0	-3,0	-3,0	3,6	2,6	-1,0
Fahrzeughalle Oberlicht 2	2	137	75,0	21	8'29	51,0	0,0	0,0	0	-53,7		-3,4	-0,5	0,0	1,6	-3,0	-3,0	3,6	2,2	4,1-
Einsatzfahrzeuge Leerlauf Ost	617	204			94,0	1,99	0,0	0,0	0	-57,2	-0,4	-12,3	-0,7	0,0	23,5	-18,1		3,6	0,6	
	-	•	•	•	•	•	•	-	-	-	-	•	-	-	-	•	•		•	

HEINE + JUD

Heine + Jud - Ingenieurbüro für Umweltakustik

SoundPLAN 8.1

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

Quelle	I oder S	Ø	5	A'w	Γw	L'w	조	Ā	S S	Adiv	Agr	Abar	Aatm	dLrefl	Ls	dLw(LrT)	dLw(LrN)	ZR(LrT)	LrI	r'
	m,m²	E	dB(A)	dB	dB(A)	dB(A)	dB	ВВ	dB	ф	ф	ф	ф	dB	dB(A)	ф	dB	ф	dB(A)	dB(A)
Fahrzeughalle Tore tags	245	143	0'52	0	6'86	75,0	0,0	0,0	0	-54,1	9,0	0,0	8,0-	0,0	44,5	-3,0		3,6	45,2	
Funktionstest Kleingeräte	1361	130			100,0	68,7	0,0	0,9	0	-53,3	0,4	9,0-	-2,2	4,0	44,7	-15,1		3,6	39,2	
Kommunikation tags	1039	136			90,08	49,8	2,0	0,0	0	-53,7	8,0-	9,0-	8,0-	4,0	24,7	-12,0		3,6	21,2	
Lkw Fahrten Waschhalle	86	198			82,9	63,0	0,0	0,0	0	-56,9	-0,4	-5,1	-1,2	1,1	20,3	4,3		3,6	19,7	
Lkw Rangieren Einsatz tags	1625	139			85,9	53,8	0,0	0,0	0	-53,9	-0,4	-0,3	6,0-	0,4	30,8	4,3		3,6	30,2	
Transporter Fahrten Waschhalle	86	198			72,9	53,0	0,0	0,0	0	-56,9	-0,4	-5,1	-1,2	<u></u>	10,3	0'6-		3,6	6,4	
Waschhalle Tor Ost	34	192	83,0	0	98,3	83,0	0,0	3,0	0	-56,7	6,0	-19,2	-3,7	0,0	19,6	-6,0		3,6	20,2	
Waschhalle Tor West	34	174	83,0	0	98,4	83,0	0,0	3,0	0	-55,8	6,0	0,0	9,4	0,0	38,9	-6,0		3,6	39,5	
Werkstatt	34	179	0,08	0	95,4	0,08	0,0	0,0	0	-56,1	1,0	0,0	-2,8	0,3	37,8	0,6-		3,6	32,4	
ZwLager Abkippen	1456	277			89,2	9,73	8,0	0,0	0	-59,8	6,0-	-3,6	-1,6	0,1	23,3	<u>_</u> ,		3,5	35,9	
ZwLager Lkw-Fahrten	111	274			83,4	63,0	0,0	0,0	0	-59,7	-0,5	-3,9	-1,6	0,4	18,2	1,1		3,5	22,8	
ZwLager Lkw-Rangieren	2876	285			87,4	52,8	0,0	0,0	0	-60,1	-0,5	-2,1	-1,8	0,1	22,9	<u>,</u>		3,5	27,5	
ZwLager Radlader	2876	285			107,0	72,4	0,0	0,0	0	-60,1	-0,5	-2,0	-2,4	0,1	42,0	-2,0		3,4	43,4	
ZwLager Radlader-RFW	2876	285			104,0	69,4	0,0	0,0	0	-60,1	0,4	-1,9	-4,5	0,1	37,9	-5,1		3,4	36,3	

Heine + Jud - Ingenieurbüro für Umweltakustik

NE + JUD

Anlage A19

po I	l oder S		∏ N'A	Γw	L'w	조	Ā	Š	Adiv	Agr	Abar	Aatm	dLrefl	Ls	dLw(LrT)	dLw(LrN)	ZR(LrT)	Lrī	L'A
m,m² m		dB(A)	A) dB	dB(A)	dB(A)	dB	ф	dB	dB	dB	dB	dB	dB	dB(A)	dB	dB	dB	dB(A)	dB(A)
RW,T 55 dB(A) RW,		N 40	RW,N 40 dB(A) R\	RW,T,max 85	dB(A)	RW,N,max 60	60 dB(A)	LrT 48,4	48,4 dB(A) L	LrN 39,1 c	dB(A) LT	LT,max 66,7	7 dB(A)	LN,max 5	58,2 dB(A)				
2345 64	4			89,1	55,3	0,0	0,0	0	-47,1	-0,1	0,0	-0,5	0,2	41,7	-10,0	-3,8	3,6	35,3	37,9
7 25	2			56,2	47,5	0,0	0,0	0	-38,8	1,0	0,0	-0,5	0,0	17,4	8,0	14,0	3,6	29,0	31,4
43	9			75,0	75,0	0,0	0,0	0	-43,6	0,2	-9,3	-0,2	0,0	22,1	0,0	0,0	3,6	25,7	22,1
288 188	 დ			79,0	54,4	0,0	0,0	 o	-56,5	0,1	0,0	-1,3	7,2	22,8	-6,0	-3,0	3,6	20,4	19,8
129	စ္တ			75,0	75,0	0,0	0,0	0	-53,2	-0,3	-2,2	6,0-	0,0	18,4	0,0	0,0	3,6	22,0	18,4
125 88	œ			84,0	63,0	0,0	0,0	0	-49,9	-0,5	-18,6	-0,3	2,4	17,2	-6,0	0,0	3,6	14,8	17,2
118	œ			75,0	75,0	0,0	0,0	0	-52,5	-0,3	-5,4	9,0-	0,2	16,4	0,0	0,0	3,6	20,0	16,4
63 202	2			71,0	53,0	0,0	0,0	0	-57,1	-0,2	6,0-	-1,3	1,9	13,3	-3,0	3,0	3,6	13,9	16,3
1625 91	_			78,2	46,1	0,0	0,0	0	-50,2	-0,5	-19,6	-0,3	3,5	11,2		4,8			16,0
116 94	4			83,7	63,0	0,0	0,0	0	-50,5	-0,5	-19,5	-0,3	2,9	15,8	-6,0	0,0	3,6	13,4	15,8
107 100	0			83,3	63,0	0,0	0,0	0	-51,0	-0,5	-19,9	-0,3	3,5	15,1	-6,0	0,0	3,6	12,7	15,1
23	9			75,0	75,0	0,0	0,0	0	-45,5	0,0	-17,4	-0,2	1,6	13,6	0,0	0,0	3,6	17,2	13,6
300 216	9			68,2	43,4	0,0	0,0	0	-57,7	-0,2	-3,7	4,1-	2,6	6,7	-3,0	3,0	3,6	9,8	10,9
260 85	2			94,0	6,69	0,0	0,0	0	-49,5	-0,5	-20,0	-0,3	0,4	27,7	-22,0	-17,8	3,6	9,5	6,6
80	0			80,0	0,08	0,0	0,0	0	-49,1	-0,2	-15,0	-0,2	0,0	15,6	-6,0	-6,0	3,6	13,2	9,6
40	0			0,09	0,09	0,0	0,0	0	-43,0	0,2	9,6-	-,0	0,0	7,4	0,0	0,0	3,6	11,0	7,4
1090 77	7	75,0	0 35	69,2	38,8	0,0	0,0	0	-48,8	2,0	-11,9	-,0	0,1	6,3	-3,0	-3,0	3,6	6,6	6,3
98 106	90			72,9	53,0	0,0	0,0	0	-51,5	-0,4	-20,0	4,0-	5,3	0,9	-6,0	0,0	3,6	3,6	0,9
108 67	7	75,0	0 15	74,3	54,0	0,0	0,0	0	-47,5	0,3	-20,6	-0,5	0,1	6,4		-3,0			3,4
1766 86	ပ္			68,2	35,7	0,0	0,0	0	-49,7	-0,5	-18,3	6,0	3,1	2,4	-6,0	0,0	3,6	0,0	2,4
104	4			58,0	58,0	0,0	0,0	0	-51,3	-0,3	-5,8	-0,5	0,1	0,2	0,0	0,0	3,6	3,8	0,2
2 88	ω	75,0	0 21	22,8	51,0	0,0	0,0	0	-49,9	4,1-	9,9-	-0,1	0,0	-0,5	-3,0	-3,0	3,6	0,4	-3,2
5 101	Ξ	75,0	0 21	22,8	51,0	0,0	0,0	0	-51,1	-1,5	-6,0	-0,1	0,0	6,0-	-3,0	-3,0	3,6	-0,3	-3,9
5 75	2	75,0		57,8	51,0	0,0	0,0	0	-48,5	-1,2	-12,0	0,1	0,0	4,	-3,0	-3,0	3,6	-3,5	-7,1
2 20	0	75,0		2,78	51,0	0,0	0,0	0	-45,0	-0,8	-16,5	0,0	0,0	-4,5	-3,0	-3,0	3,6	-3,9	-7,5
5 62	2	75,0		57,8	51,0	0,0	0,0	0	-46,9	-1,1	-15,0	-0,1	0,0	-5,2	-3,0	-3,0	3,6	-4,6	-8,2
617 131	Ξ			94,0	66,1	0,0	0,0	0	-53,3	-0,3	0,0	-1,0	1,0	40,3	-18,1		3,6	25,9	
-	_		-	_	_	-	-	-	-	-	-	-	-	-	•	-	-	-	

HEINE + JUD

Heine + Jud - Ingenieurbüro für Umweltakustik

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

Quelle	l oder S	S	ıп	R'w	Γw	M, T	조	KT	S S	Adiv	Agr	Abar	Aatm	dLrefl	Ls	dLw(LrT)	dLw(LrN)	ZR(LrT)	LrT	LrN
	m,m²	ш	dB(A)	dB	dB(A)	dB(A)	dB	명	dB	В	ф	dB	dB	dB	dB(A)	dB	dB	dB	dB(A)	dB(A)
Fahrzeughalle Tore tags	245	81	0'52	0	6'86	75,0	0,0	0,0	0	-49,2	0,1	-22,6	-0,4	7,4	34,2	-3,0		3,6	34,8	
Funktionstest Kleingeräte	1361	8			100,0	68,7	0,0	0,9	0	-49,1	0,3	-20,6	-1,0	4,7	34,4	-15,1		3,6	28,9	
Kommunikation tags	1039	82			80,0	49,8	2,0	0,0	0	-49,3	6,0-	-21,2	6,0-	6,4	13,2	-12,0		3,6	8,6	
Lkw Fahrten Waschhalle	86	139			82,9	63,0	0,0	0,0	0	-53,9	-0,3	-2,5	-1,0	2,0	25,9	4,3		3,6	25,3	
Lkw Rangieren Einsatz tags	1625	91			85,9	53,8	0,0	0,0	0	-50,2	-0,5	-19,6	6,0-	3,5	18,9	4,3		3,6	18,3	
Transporter Fahrten Waschhalle	86	139			72,9	53,0	0,0	0,0	0	-53,9	-0,3	-2,5	-1,0	2,0	15,9	0,6-		3,6	10,5	
Waschhalle Tor Ost	34	126	83,0	0	98,3	83,0	0,0	3,0	0	-53,0	1,0	0,0	4,	0,0	42,1	-6,0		3,6	42,7	
Waschhalle Tor West	34	124	83,0	0	98,4	83,0	0,0	3,0	0	-52,9	6,0	-23,6	-2,6	0,0	20,2	-6,0		3,6	20,8	
Werkstatt	34	131	0,08	0	95,4	0,08	0,0	0,0	0	-53,3	<u></u>	-24,6	-2,1	0,0	16,4	0,6-		3,6	11,0	
ZwLager Abkippen	1456	187			89,2	9,75	8,0	0,0	0	-56,4	-0,8	-6,5	6,0-	0,3	24,9	1,1		3,5	37,5	
ZwLager Lkw-Fahrten	11	181			83,4	63,0	0,0	0,0	0	-56,1	-0,2	6,1	-1,0	4,0	20,4	1,1		3,5	25,0	
ZwLager Lkw-Rangieren	2876	188			87,4	52,8	0,0	0,0	0	-56,5	-0,2	-5,9	-1,0	0,2	24,0	1,1		3,5	28,6	
ZwLager Radlader	2876	188			107,0	72,4	0,0	0,0	0	-56,5	-0,3	-5,9	6,1-	0,2	43,2	-2,0		3,4	44,6	
ZwLager Radlader-RFW	2876	188			104,0	69,4	0,0	0,0	0	-56,5	8,0	-7,1	-2,7	6,0	38,8	-5,1		3,4	37,1	

Heine + Jud - Ingenieurbüro für Umweltakustik

70110

Anlage A21

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

Quelle	I oder S	S	ij	R'w	Γw	L'w	조	노 노	Š O	Adiv	Agr	Abar	Aatm	dLrefl	Ls	dLw(LrT)	dLw(LrN)	ZR(LrT)	LrT	Lr
	m,m²	Е	dB(A)	dB	dB(A)	dB(A)	dB	dB	dB	ф	dB	dB	dB	dB	dB(A)	dB	dB	dB	dB(A)	dB(A)
Römerstraße 26 1.0G N F	RW,T 55 dB(A)		RW,N 40 dB(A)		RW,T,max 85 dB(A)		RW,N,max	60 dB(A)	LrT 49,4	,4 dB(A) L	LrN 39,3 c	dB(A) LT	,max 63,	(A) db (e)	LN,max 5	58,6 dB(A)				
Parkplatz Einsätze	2345	64			1,68	55,3	0,0	0,0		-47,1	-0,3	0,0	-0,5	9,0	41,5	-10,0	-3,8	3,6	35,1	37,7
Pkw Fahrten	7	23			56,2	47,5	0,0	0,0	0	-38,1	4,0	0,0	-0,2	0,0	18,3	8,0	14,0	3,6	29,9	32,3
RLT-Anlage 4		61			75,0	75,0	0,0	0,0	0	-46,7	6,0	4,2	-0,7	0,0	24,2	0,0	0,0	3,6	27,9	24,2
RLT Anlage 6		22			75,0	15,0	0,0	0,0		-45,8	6,0	9,9-	-0,3	0,0	23,2	0,0	0,0	3,6	26,8	23,2
Deflektorhaube Abluft 1		129			75,0	75,0	0,0	0,0		-53,2	8,0	<u>-</u> , <u>-</u>	-1,2	0,0	20,3	0,0	0,0	3,6	23,9	20,3
Ausblasöffnung Abqasabsauqung		98			80,0	0,08	0,0	0,0	0	-49,7	6,0	4,6	-0,7	0,0	25,9	0,9-	0,9-	3,6	23,5	19,9
Deflektorhaube Abluft 2		120			75,0	75,0	0,0	0,0	0	-52,6	8,0	-3,8	4,1-	0,0	18,1	0,0	0,0	3,6	21,7	18,1
DRK Parkplatz	288	210			79,0	54,4	0,0	0,0	0	-57,4	-0,7	-0,4	-1,7	1,6	20,4	-0,0	-3,0	3,6	18,0	17,4
DRK Fahrten	63	224			71,0	53,0	0,0	0,0	0	-58,0	-0,3	6,0-	4,1-	2,0	12,3	-3,0	3,0	3,6	13,0	15,4
Lkw Fahrten 1	125	102			84,0	63,0	0,0	0,0	0	-51,2	-0,3	-19,2	-0,3	0,1	13,1	0,0	0,0	3,6	10,7	13,1
Lkw Fahrten 2	116	106			83,7	63,0	0,0	0,0	0	-51,5	-0,4	-19,3	-0,3	0,0	12,2	0,0	0,0	3,6	8,6	12,2
Lkw Fahrten 3	107	7			83,3	63,0	0,0	0,0	0	-51,9	-0,4	-19,2	-0,3	0,0	11,6	-6,0	0,0	3,6	9,5	11,6
Lkw Rangieren Einsatz nachts	1625	103			78,2	46,1	0,0	0,0	0	-51,2	-0,3	-19,9	6,0-	0,0	6,4		4,8			11,2
Fahrzeughalle Dach	1090	87	75,0	35	69,2	38,8	0,0	0,0	0	-49,8	6,0	-6,1	-0,2	0,0	14,0	-3,0	-3,0	3,6	14,7	11,0
Wärmepumpe		20			0,09	0,09	0,0	0,0	0	-45,0	6,0	8,	-0,5	0,0	10,7	0,0	0,0	3,6	14,3	10,7
DRK Transporter Rangieren	300	239			68,2	43,4	0,0	0,0	0	-58,5	-0,2	-3,4	4,1-	2,4	7,1	-3,0	3,0	3,6	7,7	10,1
Einsatzfahrzeuge Leerlauf	260	96			94,0	6,69	0,0	0,0	0	-50,7	-0,3	-20,4	-0,3	0,0	22,4	-22,0	-17,8	3,6	3,9	4,6
Fahrzeughalle Oberlicht 2	ည	02	75,0	21	8,73	51,0	0,0	0,0	0	-47,9	8,0	-5,2	-0,1	0,0	5,4	-3,0	-3,0	3,6	0,9	2,4
Klimaaußengerät		106			58,0	58,0	0,0	0,0	0	-51,5	6,0	-3,7	-1,3	0,0	2,4	0,0	0,0	3,6	0,9	2,4
Fahrzeughalle Tore nachts	108	28	75,0	15	74,3	54,0	0,0	0,0	0	-48,9	8,0	-21,2	-0,5	0,0	4,8		-3,0			, 8,
Fahrzeughalle Oberlicht 3	ည	8	75,0	21	8,73	51,0	0,0	0,0	0	-49,2	8,0	8,4	-0,1	0,0	4,5	-3,0	-3,0	3,6	5,2	1,5
Transporter Fahrten	86	115			72,9	53,0	0,0	0,0	0	-52,2	-0,4	-18,9	-0,3	0,0	1,0	-6,0	0,0	3,6	4,1-	1,0
Fahrzeughalle Oberlicht 4	2	93	75,0	21	8,73	51,0	0,0	0,0	0	-50,3	8,0	8,4	, 1, 1,	0,0	3,3	-3,0	-3,0	3,6	3,9	6,0
Fahrzeughalle Oberlicht 5	2	105	75,0	21	8,73	51,0	0,0	0,0	0	-51,4	8,0	7,4	-0,5	0,0	2,3	-3,0	-3,0	3,6	2,9	-0,7
Transporter Rangieren	1766	66			68,2	35,7	0,0	0,0	0	-50,9	-0,3	-19,8	-0,3	0,4	-2,8	-6,0	0,0	3,6	-5,2	-2,8
Fahrzeughalle Oberlicht 1	S)	09	75,0	21	57,8	51,0	0,0	0,0	0	-46,6	8,0	-13,0	-0,1	0,0	1,1	-3,0	-3,0	3,6	-0,2	4,
Einsatzfahrzeuge Leerlauf Ost	617	129			94,0	66,1	0,0	0,0	0	-53,2	-0,4	0,0	6,0	2,0	40,2	-18,1		3,6	25,8	

Ergebnisnr.: 3

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

Quelle	I oder S	o	ij	N'W	Γw	L'w	조	Ā	중 	Adiv	Agr	Abar	Aatm	dLrefl	Ls S	dLw(LrT)	dLw(LrN)	ZR(LrT)	L1	L'A
	m,m²	E	dB(A)	dB	dB(A)	dB(A)	ф	ф	dB	ф	dB	dB	dB	dB	dB(A)	dB	dВ	dB	dB(A)	dB(A)
Fahrzeughalle Tore tags	245	92	75,0	0	6'86	75,0	0,0	0,0	0	-50,3	9,0	-23,1	-0,4	0,4	25,9	-3,0		3,6	26,6	
Funktionstest Kleingeräte	1361	8			100,0	2'89	0,0	0,0	0	-50,4	0,4	-22,6	-1,2	6,1	27,5	-15,1		3,6	22,1	
Kommunikation tags	1039	92			90,08	49,8	2,0	0,0	0	-50,5	-0,7	-22,0	-0,4	4,0	8,9	-12,0		3,6	8,8	
Lkw Fahrten Waschhalle	86	139			82,9	63,0	0,0	0,0	0	-53,9	-0,4	-2,3	6,0-	9,0	26,1	-4,3		3,6	25,4	
Lkw Rangieren Einsatz tags	1625	103			85,9	53,8	0,0	0,0	0	-51,2	-0,3	-19,9	-0,3	0,0	14,1	4,3		3,6	13,5	
Transporter Fahrten Waschhalle	86	139			72,9	53,0	0,0	0,0	0	-53,9	-0,4	-2,3	6,0-	9,0	16,1	0,6-		3,6	10,7	
Waschhalle Tor Ost	34	126	83,0	0	98,3	83,0	0,0	3,0	0	-53,0	6,0	0,0	-4,0	0,0	42,2	-6,0		3,6	42,8	
Waschhalle Tor West	34	128	83,0	0	98,4	83,0	0,0	3,0	0	-53,2	6,0	-23,8	-2,8	0,0	19,5	-6,0		3,6	20,1	
Werkstatt	34	135	0'08	0	95,4	0,08	0,0	0,0	0	-53,6	1,0	-24,7	-2,2	0,0	15,8	0,6-		3,6	10,4	
ZwLager Abkippen	1456	177			89,2	9'29	8,0	0,0	0	-55,9	6,0-	-4,5	-1,0	0,5	27,4	1,1		3,5	40,0	
ZwLager Lkw-Fahrten	111	171			83,4	63,0	0,0	0,0	0	-55,6	-0,4	-5,8	6,0-	8,0	21,5	1,1		3,5	26,1	
ZwLager Lkw-Rangieren	2876	177			87,4	52,8	0,0	0,0	0	-55,9	-0,4	-5,0	6,0-	0,5	25,6	1,1		3,5	30,2	
ZwLager Radlader	2876	177			107,0	72,4	0,0	0,0	0	-55,9	-0,5	-5,0	-1,2	0,5	44,9	-2,0		3,4	46,2	
ZwLager Radlader-RFW	2876	177			104,0	69,4	0,0	0,0	0	-55,9	0,4	-6,0	-2,7	9,0	40,4	-5,1		3,4	38,8	

Heine + Jud - Ingenieurbüro für Umweltakustik

Anlage A23

dB(A) 36,6 22,2 21,3 20,4 Ľ 18,6 14,9 1,3 10,0 28,3 17,5 10,7 10,2 -0,3 -1,2 -2,0 17,7 9,6 8,3 9,0 ó, -0,4 7,4 9,7 1,7 0,4 3,1 dB(A) 24,9 25,9 22,2 12,5 7,2 25,8 24,1 18,3 21,1 13,6 -2,8 6,8 8,3 3,6 1,6 님 2,4 5,3 2,4 3,3 2,4 -7,1 ZR(LrT) 3,6 3,6 3,6 3,6 3,6 용 3,6 3,6 3,6 3,6 3,6 dLw(LrN) -17,8 -3,0 -3,0 -3,0 -3,0 명 0,0 0,0 6,0 0,0 0,0 0,0 8, 3,0 0,0 0,0 3,0 dLw(LrT) LN,max 55,7 dB(A) -22,0 -10,0 -18,1 3,0 6,0 6,0 9-3,0 -3,0 0,0 3,0 9,0 3,0 3,0 쁑 0,0 6,0 0,0 dB(A) 21,3 24,6 20,8 14,3 22,2 20,4 1,9 11,3 10,2 13,0 40,3 20,7 10,7 8,3 9,9 4,9 3,6 3,4 2,9 Ľ 1,7 LT,max 63,3 dB(A) dLrefl В 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 2,7 0,7 Aatm -1,5 9,0φ, Ο -0,2 -0,5 -0,2 -0,4 -0,4 -0,4 -0,2 6,0 ф 6.4 ó, 4 ó, ó, 0,1 LrN 37,7 dB(A) 19,8 19,8 -20,3 Abar -20,4 -20,7 -21,1 -19,7 -6,0 19,7 0,2 -0,7 0,0 8 -0,2 -0,3 -0,3 -0,3 Agr 6,0 -0,4 -0,4 -0,4 -0,4 -0,2 9,0 -0,3 -0,4 4,0 0,0 6,0 0,0 쁑 4,0 RW,N,max 60 dB(A) LrT 49,1 dB(A) -48,3 48,2 -47,8 -50,5 -52,9 -51,6 -51,9 -51,0 -51,9 -53,3 -53,4 52,2 -52,4 -50,8 -48,3 -58,7 -52,7 -59,2 -47,1 49,1 -50,1 58,1 Adiv -52,1 50,1 쁑 ф 중 0,0 쁑 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 궃 0,0 0,0 0,0 ВВ 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 고 dB(A) RW,N 40 dB(A) RW,T,max 85 dB(A) 58,0 54,0 51,0 51,0 53,0 51,0 51,0 75,0 75,0 75,0 53,0 63,0 63,0 63,0 38,8 0,09 6,69 51,0 54,4 75,0 35,7 46,1 66,1 dB(A) 75,0 71,0 84,0 83,3 69,2 0,09 94,0 58,0 57,8 74,3 57,8 57,8 72,9 57,8 57,8 89,1 75,0 79,0 83,7 78,2 68,2 68,2 94,0 ≥ ₩ |≷ 용 35 21 15 21 21 2 2 dB(A) 75,0 75,0 75,0 75,0 75,0 75,0 75,0 ≔ 228 242 417 118 417 256 108 100 Ε 8 121 86 8 11 90 73 90 125 Ξ Ξ 130 ഗ RW, T 55 dB(A) oder S m,m² 2345 1090 1625 1766 63 125 116 300 288 107 617 260 5 5 5 5 98 5 ≷ DRK Transporter Rangieren Fahrzeughalle Tore nachts Einsatzfahrzeuge Leerlauf Fahrzeughalle Oberlicht 2 Fahrzeughalle Oberlicht 5 Einsatzfahrzeuge Leerlauf Fahrzeughalle Oberlicht 3 Fahrzeughalle Oberlicht 4 Fahrzeughalle Oberlicht 1 Deflektorhaube Abluft 2 Deflektorhaube Abluft 1 Lkw Rangieren Einsatz **Transporter Rangieren** EG **Transporter Fahrten** -ahrzeughalle Dach Parkplatz Einsätze Abgasabsaugung Römerstraße 28 Klimaaußengerät Ausblasöffnung DRK Parkplatz Lkw Fahrten 3 Lkw Fahrten 2 Wärmepumpe RLT Anlage 6 Lkw Fahrten 1 RLT-Anlage 4 **DRK Fahrten** Pkw Fahrten Quelle nachts

HEINE + JUD

Heine + Jud - Ingenieurbüro für Umweltakustik

SoundPLAN 8.1

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Einsätze -

Quelle	I oder S	S	; <u> </u>	R'w	Lw	L'w	조	Ā	О	Adiv	Agr	Abar	Aatm	dLrefl	Ls	dLw(LrT)	dLw(LrN)	ZR(LrT)	Lrī	۲̈
	m,m	E	dB(A)	dB	dB(A)	dB(A)	dB	ф	dB	ф	dB	dB	dB	dB	dB(A)	dB	dB	dB	dB(A)	dB(A)
Fahrzeughalle Tore tags	245	104	75,0	0	6'86	75,0	0,0	0,0	0	-51,3	6,0	-23,1	-0,5	0,0	24,3	-3,0		3,6	25,0	
Funktionstest Kleingeräte	1361	106			100,0	2'89	0,0	0,0	0	-51,5	0,4	-23,0	4,1-	0,4	24,9	-15,1		3,6	19,5	
Kommunikation tags	1039	107			90,08	49,8	2,0	0,0	0	-51,6	-0,7	-22,5	-0,5	0,0	4,7	-12,0		3,6	1,3	
Lkw Fahrten Waschhalle	86	142			82,9	63,0	0,0	0,0	0	-54,0	-0,3	-2,2	6,0	9,0	26,1	4,3		3,6	25,5	
Lkw Rangieren Einsatz tags	1625	114			85,9	53,8	0,0	0,0	0	-52,1	-0,4	-20,4	-0,4	0,0	12,6	4°,3		3,6	12,0	
Transporter Fahrten Waschhalle	86	142			72,9	53,0	0,0	0,0	0	-54,0	-0,3	-2,2	6,0	9,0	16,1	0'6-		3,6	10,7	
Waschhalle Tor Ost	34	129	83,0	0	98,3	83,0	0,0	3,0	0	-53,2	6,0	0,0	4 -,	0,1	42,1	-6,0		3,6	42,7	
Waschhalle Tor West	34	135	83,0	0	98,4	83,0	0,0	3,0	0	-53,6	6,0	-23,8	-2,8	0,0	19,1	-6,0		3,6	19,7	
Werkstatt	34	141	0'08	0	95,4	0,08	0,0	0,0	0	-53,9	<u></u>	-24,8	-2,3	0,0	15,4	0,6-		3,6	10,0	
ZwLager Abkippen	1456	171			89,2	9,75	8,0	0,0	0	-55,6	-0,7	-5,6	6,0-	0,5	26,9	1,1		3,5	39,5	
ZwLager Lkw-Fahrten	111	165			83,4	63,0	0,0	0,0	0	-55,3	-0,2	9,9-	8,0-	8,0	21,3	1,1		3,5	25,8	
ZwLager Lkw-Rangieren	2876	169			87,4	52,8	0,0	0,0	0	-55,5	-0,2	-5,8	6,0-	9,0	25,4	۲,		3,5	30,0	
ZwLager Radlader	2876	169			107,0	72,4	0,0	0,0	0	-55,5	-0,2	-5,8	<u></u>	9,0	44,7	-2,0		3,4	46,1	
ZwLager Radlader-RFW	2876	169			104,0	69,4	0,0	0,0	0	-55,5	0,7	-7,0	-2,4	0,5	40,2	-5,1		3,4	38,6	

Heine + Jud - Ingenieurbüro für Umweltakustik

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Rechenlaufinformation Übungen -

Projektbeschreibung

Projekttitel: Feuerwehr u. Zw.-Lager Rheinfelden II

Projekt Nr.: 2036 Projektbearbeiter: CR

Auftraggeber: Stadtverwaltung Rheinfelden

Beschreibung:

Rechenlaufparameter

Reflexionsordnung 3

Maximaler Reflexionsabstand zum Empfänger 200 m Maximaler Reflexionsabstand zur Quelle 50 m

Suchradius 5000 m Filter: dB(A) Zulässige Toleranz (für einzelne Quelle): 0,100 dB

Bodeneffektgebiete aus Straßenoberflächen erzeugen: Nein

Richtlinien:

Gewerbe: ISO 9613-2: 1996

Luftabsorption: ISO 9613-1

regulärer Bodeneffekt (Kapitel 7.3.1), für Quellen ohne Spektrum automatisch alternativer Bodeneffekt

Begrenzung des Beugungsverlusts:

einfach/mehrfach 20,0 dB /25,0 dB

Seitenbeugung: Veraltete Methode (seitliche Pfade auch um Gelände)

Verwende Glg (Abar=Dz-Max(Agr,0)) statt Glg (12) (Abar=Dz-Agr) für die Einfügedämpfung

Umgebung:

Luftdruck 1013,3 mbar relative Feuchte 70,0 % Temperatur 10,0 °C

Meteo. Korr. C0(6-22h)[dB]=0,0; C0(22-6h)[dB]=0,0; Cmet für Lmax Gewerbe Berechnungen ignorieren: Nein

Beugungsparameter: C2=20,0

Zerlegungsparameter:

Faktor Abstand / Durchmesser 8

Minimale Distanz [m] 1 m

Max. Differenz Bodendämpfung + Beugung 1,0 dB

Max. Iterationszahl 4

Minderung

Bewuchs: ISO 9613-2 Bebauung: ISO 9613-2 Industriegelände: ISO 9613-2

Parkplätze: ISO 9613-2: 1996

Emissionsberechnung nach: Parkplatzlärmstudie 2007

Luftabsorption: ISO 9613-1

regulärer Bodeneffekt (Kapitel 7.3.1), für Quellen ohne Spektrum automatisch alternativer Bodeneffekt

Begrenzung des Beugungsverlusts:

einfach/mehrfach 20,0 dB /25,0 dB

Seitenbeugung: Veraltete Methode (seitliche Pfade auch um Gelände)

Verwende Glg (Abar=Dz-Max(Agr,0)) statt Glg (12) (Abar=Dz-Agr) für die Einfügedämpfung

Umgebung:

Luftdruck 1013,3 mbar relative Feuchte 70,0 % Temperatur 10.0 °C

Meteo. Korr. C0(6-22h)[dB]=0,0; C0(22-6h)[dB]=0,0; Cmet für Lmax Gewerbe Berechnungen ignorieren: Nei

Beugungsparameter: C2=20,0

Zerlegungsparameter:

Faktor Abstand / Durchmesser 8
Minimale Distanz [m] 1 m

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Rechenlaufinformation Übungen -

Max. Differenz Bodendämpfung + Beugung 1,0 dB

Max. Iterationszahl 4

Minderung

Bewuchs: ISO 9613-2
Bebauung: ISO 9613-2
Industriegelände: ISO 9613-2

Bewertung:

Reflexion der "eigenen" Fassade wird unterdrückt

TA-Lärm - Werktag

<u>Geometrie daten</u>

Prognose Übungen.sit	07.09.2020 11:08:20
- enthält:	
DRK.geo	17.08.2020 12:18:40
G001_Gebäude.geo	07.09.2020 09:45:58
l001 Immissionsorte.geo	17.08.2020 11:39:24
Q002 Bauhof.geo	07.09.2020 10:08:06
Q002 Übungen.geo	30.07.2020 11:28:54
R001 Rechengebiet.geo	07.09.2020 11:04:04
RDGM0001.dgm	10.07.2020 11:12:12

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Liste der Schallquellen, Übungen

HEINE + JUD

Legende

Name

Quellname

Quellname

Typ der Quelle (Punkt, Linie, Fläche)

Li dB(A)

Rw
 dB(A)

Schalleistungspegel pro Anlage

L'w
 dB(A)

Schalleistungspegel pro m, m²

Zuschlag für Impulshaltigkeit

L'w
 dB(A)

Schalleistungspegel pro m, m²

Zuschlag für Impulshaltigkeit

Zuschlag für Impulshaltigkeit

Zuschlag für Tonhaltigkeit

Zuschlag für Tonhaltigkeit

Zuschlag für Tonhaltigkeit

AB(A)

Schalleistungspegel dieser Frequenz

Schalleistungspegel dieser Frequenz

Schalleistungspegel dieser Frequenz

GB(A)

Schalleistungspegel dieser Frequenz

Heine + Jud - Ingenieurbüro für Umweltakustik

SoundPLAN 8.1

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Liste der Schallquellen, Übungen

Name	Quelityp I oder S	l oder S	=	A W	Lw	M, J	조	Ā	LwMax	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz
		m,m	dB(A)	dB	dB(A)	dB(A)	dB	dB	dB(A)								
Ausblasöffnung Abgasabsaugung	Punkt				75,0	75,0	0,0	0,0		42,5	60,1	69,1	68,5	2'99	6,79	65,2	61,6
Deflektorhaube Abluft 1	Punkt				75,0	75,0	0,0	0,0		42,5	60,1	69,1	68,5	2'99	6,79	65,2	61,6
Deflektorhaube Abluft 2	Punkt				75,0	75,0	0,0	0,0		42,5	60,1	69,1	68,5	2'99	6,79	65,2	61,6
DRK Fahrten	Linie	63			71,0	53,0	0,0	0,0	97,5	51,3	54,3	60,3	63,3	67,3	64,3	58,3	50,3
DRK Parkplatz	Parkplatz	288			79,0	54,4	0,0	0,0	97,5	62,3	73,9	66,4	6'02	71,0	71,4	68,7	62,5
DRK Transporter Rangieren	Fläche	300			68,2	43,4	0,0	0,0	97,5	48,5	51,5	57,5	60,5	64,5	61,5	52,5	47,5
Fahrzeughalle Dach	Fläche	1090	75,0	35	69,2	38,8	0,0	0,0		29,7	62,7	57,4	59,2	65,7	55,2	41,7	33,7
Fahrzeughalle Oberlicht 1	Fläche	2	75,0	21	8,73	51,0	0,0	0,0		41,2	41,4	54,6	9,63	47,4	33,2	17,0	7,2
Fahrzeughalle Oberlicht 2	Fläche	2	75,0	21	8,73	51,0	0,0	0,0		41,2	41,4	54,6	53,6	47,4	33,2	17,0	7,2
Fahrzeughalle Oberlicht 3	Fläche	2	75,0	21	8,73	51,0	0,0	0,0		41,2	41,4	54,6	9,63	47,4	33,2	17,0	7,2
Fahrzeughalle Oberlicht 4	Fläche	5	75,0	21	57,8	51,0	0,0	0,0		41,2	41,4	54,6	53,6	47,4	33,2	17,0	7,2
Fahrzeughalle Oberlicht 5	Fläche	2	75,0	21	8,73	51,0	0,0	0,0		41,2	41,4	54,6	9,63	47,4	33,2	17,0	7,2
Fahrzeughalle Tore tags	Fläche	353	75,0	0	100,5	75,0	0,0	0,0		8,08	83,8	8,68	92,8	8,96	93,8	8,78	79,8
Klimaaußengeräte	Punkt				58,0	58,0	0,0	0,0		25,5	43,1	52,1	51,5	49,7	6'09	48,2	44,6
Kommunikation Übungen	Fläche	2230			83,0	49,5	3,6	0,0	0,06	40,9	46,0	58,0	78,0	0,08	75,0	6'99	49,9
Parkplatz Übungen	Parkplatz	2345			89,1	55,3	0,0	0,0	97,5	72,4	84,0	2,97	81,0	81,1	81,5	78,8	72,6
Pkw Fahrten	Linie	7			56,2	47,5	0,0	0,0		9'98	39,6	45,6	48,6	52,6	49,6	43,6	35,6
RLT-Anlage 4	Punkt				75,0	75,0	0,0	0,0		42,5	60,1	69,1	68,5	2'99	6,79	65,2	61,6
RLT Anlage 6	Punkt				75,0	75,0	0,0	0,0		42,5	60,1	69,1	68,5	2'99	6,79	65,2	61,6
Übungen Kleingeräte	Fläche	294			100,0	75,3	0,0	0,9		67,4	77,4	84,4	90,4	93,4	94,4	94,4	89,4
Übungen Lkw Leerlauf	Fläche	1597			94,0	62,0	0,0	0,0	97,5	75,2	78,2	82,2	87,2	90,2	87,2	81,2	72,2
Übungen Rangieren	Fläche	1597			92,8	8,09	0,0	0,0	108,0	73,1	76,1	82,1	85,1	89,1	86,1	80,1	72,1
Wärmepumpe	Punkt				0,09	0,09	0,0	0,0		27,5	45,1	54,1	53,5	51,7	52,9	50,2	46,6
Werkstatt Übungen	Fläche	34	80,0	0	95,4	0,08	0,0	0,0		49,2	61,8	71,6	7,77	86,1	92,4	2'68	84,2
ZwLager Abkippen	Fläche	1456			89,2	9,73	8,0	0,0	121,0	8'59	72,9	9'62	83,7	84,1	81,9	7,77	70,8
ZwLager Lkw-Fahrten	Linie	111			83,4	63,0	0,0	0,0	108,0	63,8	8,99	72,8	75,8	8'62	76,8	8'02	62,8
ZwLager Lkw-Rangieren	Fläche	2876			87,4	52,8	0,0	0,0	108,0	67,7	70,7	76,7	79,7	83,7	80,7	74,7	66,7
ZwLager Radlader	Fläche	2876			107,0	72,4	0,0	0,0	123,0	86,5	89,5	95,5	100,5	102,5	99,5	95,5	95,5
ZwLager Radlader-RFW	Fläche	2876			104,0	69,4	0,0	0,0		71,0	81,0	88,0	94,0	0,76	0'86	0'86	0,96

Ergebnisnr.: 4

- Teilpegelliste Ausbreitungsberechnung, Übungen -Feuerwehr u. Zw.-Lager Rheinfelden II Schalltechnische Untersuchung

Legende

Name der Schallquelle Größe der Quelle (Länge oder Fläche) Schallquelle I oder S

Mittlere Entfernung Schallquelle - Immissionsort

S Li Lw Lw KI KT KT Ko Adiv Agr Abar Abar Allrefl

Schallleistungspegel pro Anlage Schallleistungspegel pro m, m²

Schalldämm-Maß nnenpegel

Zuschlag für İmpulshaltigkeit
Zuschlag für Tonhaltigkeit
Zuschlag für gerichtete Abstrahlung
Mittlere Dämpfung aufgrund geometrischer Ausbreitung
Mittlere Dämpfung aufgrund Bodeneffekt
Mittlere Dämpfung aufgrund Abschirmung
Mittlere Dämpfung aufgrund Luftabsorption

dLw(LrT) Tag

dLw(LrN) ZR(LrT) Tag LrT Tag LrN

Jnbewerteter Schalldruck am Immissionsort

Korrektur Betriebszeiten Tag

Pegelerhöhung durch Reflexionen

Korrektur Betriebszeiten

Ruhezeitenzuschlag (Anteil) Tag Beurteilungspegel Tag Beurteilungspegel Nacht

Heine + Jud - Ingenieurbüro für Umweltakustik

SoundPLAN 8.1

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Übungen -

Schallquelle	I oder S	S	ij	R W	Lw	L'w	조	Ž	Ko A	Adiv /	Agr /	Abar	Aatm	dLrefl	Ls	dLw(LrT)	dLw(LrN)	ZR(LrT)	LrT	L
												-				Tag		Tag	Tag	
	m,m	E	dB(A)	쁑	dB(A)	dB(A)	B	g B	 号	eg B		뜅	B	ВB	dB(A)	8	g B	ф	dB(A)	dB(A)
BG "östlich Cranachstraße" 2.0G	RW,T 55 dB(A)		RW,N 40 dB(A)	1	RW,T,max 85 dB(A)	x 85 dB(A	A) RW,N,	max	60 dB(A)	LrT 46,	,5 dB(A)	LrN 25,7	,7 dB(A)	LT,max	63,2 dB(A)	۸) LN,max 44,	4,6 dB(A)			
Ausblasöffnung Abgasabsaugung		197			75,0	75,0	0,0	0,0	0	. 6'99		-1,3	-1,7	0,0	16,1	-6,0	-6,0	1,9	12,0	10,1
Deflektorhaube Abluft 1		190			75,0	75,0	0,0	0,0	~ 	. 9,95	0,1	-2,2	6,1-	0,0	15,3	0,0	0,0	0,1	17,3	15,3
Deflektorhaube Abluft 2		189			75,0	75,0	0,0	0,0	~ 	. 26,5		-1,9	-1, 8,	0,0	15,8	0,0	0,0	0,1	17,7	15,8
DRK Fahrten	63	145			71,0	53,0	0,0	0,0	~ 			-2,2	-1,0	1,3	14,4	-3,0	3,0	0,1	13,3	17,4
DRK Transporter Rangieren	300	145			68,2	43,4	0,0	0,0	~ 	-54,2	-0,4	-3,8	-1,0	2,8	11,5	-3,0	3,0	0,1	10,4	14,5
Fahrzeughalle Dach	1090	191	75,0	35	69,2	38,8	0,0	0,0	~ 	. 9,95-		-4,7	-0,4	0,1	8,5	0,6-		0,9	5,5	
Fahrzeughalle Oberlicht 1	2	214	75,0	7	8,73	51,0	0,0	0,0	~ 	. 9'29-		-4,7	-0,3	1,2	-2,6	0'6-		0,9	-5,7	
Fahrzeughalle Oberlicht 2	2	207	75,0	21	8,73	51,0	0,0	0,0	~ 	. 21,3		-4,7	-0,3	0,0	-3,5	0'6-		0,9	-6,5	
Fahrzeughalle Oberlicht 3	2	200	75,0	71	8,73	51,0	0,0	0,0	~ 	. 0,73-		-4,7	-0,3	0,0	-3,2	0,6-		0,9	-6,3	
Fahrzeughalle Oberlicht 4	2	194	75,0	71	57,8	51,0	0,0	0,0	~ 	. 8'99-	<u>-,</u>	-4,7	-0,3	0,0	-3,0	0,6-		0,9	-6,0	
Fahrzeughalle Oberlicht 5	2	189	75,0	21	8,73	51,0	0,0	0,0	~ 	-56,5		-4,7	-0,3	0,0	-2,7	0'6-		0,9	-5,7	
Fahrzeughalle Tore tags	353	188	75,0	0	100,5	75,0	0,0	0,0	~ 	-56,5		0,0	<u></u>	0,0	43,5	0'6-		0,9	40,5	
Klimaaußengeräte		193			58,0	28,0	0,0	0,0	~ O	. 26,7	1,0	-1,9	-1,8	0,0	4,1-	0,0	0,0	6,1	0,5	4,1
Kommunikation Übungen	2230	180			83,0	49,5	3,6	0,0	۲ 0	-56,1 (0,0	6,0-	2,0	26,9	0,6-		0,9	27,4	
Pkw Fahrten		252			56,2	47,5	0,0	0,0	آ 0	- 29,0	-0,5	-16,9	9,0-	8,2	-12,5	2,7	14,8	0,0	8,6-	2,2
RLT Anlage 6		219			75,0	75,0	0,0	0,0	~ 	. 8'29-		-0,5	-1,5	0,0	16,3	0,0	0,0	6,1	18,2	16,3
RLT-Anlage 4		214			75,0	75,0	0,0	0,0	~ 	. 9,75-		-1,9	-2,0	0,0	14,5	0,0	0,0	0,1	16,4	14,5
Übungen Kleingeräte	594	195			100,0	75,3	0,0	0,9	~ 	-56,8	0,3	0,0	-3,0	0,5	41,0	-12,0		0,9	40,9	
Übungen Lkw Leerlauf	1597	176			94,0	62,0	0,0	0,0	~ 	- 6'59-	-0,1	0,0	7,	4,0	37,4	-15,1		0,9	28,3	
Übungen Rangieren	1597	176			92,8	8,09	0,0	0,0	~ — o	-55,9 (0,0	7,	4,0	36,2	-3,0		0,1	35,1	
Wärmepumpe		224			0,09	0,09	0,0	0,0	~ — o	-28,0	1,0 —	-0,3	4,1-	0,0	ر. د,	0,0	0,0	0,1	3,2	1 ,3
Werkstatt Übungen	34	170	0,08	0	95,4	0,08	0,0	0,0	~ O	. 9:55-		-0,2	-2,7	0,0	37,9	0,6-		0,9	34,8	
ZwLager Abkippen	1456	259			89,2	9,73	8,0	0,0	~ 	-59,2	6,0-	-6,4	7,	0,1	21,7	1,1		1,0	31,7	
ZwLager Lkw-Fahrten	17	259			83,4	63,0	0,0	0,0	~ O	- 29,3	-0,5	-2,5	-1,5	0,1	19,8	1,1		1,0	21,9	
ZwLager Lkw-Rangieren	2876	275			87,4	52,8	0,0	0,0	~ — o	- 29,8	-0,4	-3,0	-1,5	0,0	22,7	1,1		1,0	24,7	
ZwLager Radlader	2876	275			107,0	72,4	0,0	0,0	0	- 29,8	-0,5	-3,0	-1,9	0,0	41,9	-2,0		0,0	39,9	
ZwLager Radlader-RFW	2876	275			104,0	69,4	0,0	0,0	۲ 0	-59,8 (4,0	-3,5	-3,8	0,1	37,5	-5,1		0,0	32,4	
DRK Parkplatz	288	149			79,0	54,4	0,0	0,0	0	-54,4	-0,5	0,0	1,1	0,1	23,1	-6,0	-3,0	1,9	19,0	20,0
Parkplatz Übungen	2345	218	\neg	\dashv	89,1	55,3	0,0	0,0	0	- 8,73	-0,6	-12,0	-0,7	0,2	18,1	-15,1	-3,0	0,0	3,1	15,1

Ergebnisnr.: 4

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Übungen -

Schallquelle	I oder S	S	ij	R W	Lw	L'w	조	KT A	Ko Adiv	iv Agr	r Abar	ır Aatm	n dLrefl	F	dLw(LrT)	dLw(LrN)	ZR(LrT)	LrT	۲̈
															Tag		Tag	Tag	
	m,m ²	E	dB(A)	В	dB(A)	dB(A)	ф	dB d	dB dB	- В - В	В —	dB	В	dB(A)	dB	dB	dB	dB(A)	dB(A)
Büro Gärtnerei EG O RW,T 60 dB(A)	l	RW,N 45 dB(A)	l	RW,T,max 90 dB(A)		RW,N,max 65 dB(A)	x 65 dB	吉	55,3 dB(A)	4) LrN 30	0,3 dB(A)	LT,max	83,0 dB(A)	LN,max	47,3 dB(A)				
Ausblasöffnung Abgasabsaugung		113			75,0	75,0	0,0		0 -52,0		0 -21,2	Ė	9,0	1,8	0'9-	-6,0	0,0	4,2	4,2
Deflektorhaube Abluft 1		2			75,0	75,0	0,0	0,0	0 -47,1	,1 0,2	2 -14,6	6 -0,3	2,4	15,6	0,0	0,0	0,0	15,6	15,6
Deflektorhaube Abluft 2		75			75,0	75,0	0,0	0,0	0 -48,4	1,4 0,2	2 -15,9	9 -0,4	3,8	14,2	0,0	0,0	0,0	14,2	14,2
DRK Fahrten	63	279			71,0	53,0	0,0	0,0	0 -59,9		0 -21,0		1,2	9,6-	-3,0	3,0	0,0	-12,6	9,9-
DRK Transporter Rangieren	300	288			68,2	43,4	0,0	0,0	0 -60,2	0,0 0,0	0 -21,2	2 -0,9	1,2	-12,9	-3,0	3,0	0,0	-15,9	6,6-
Fahrzeughalle Dach	1090	102	75,0	35	69,2	38,8	0,0	0,0	0 -51,1	,1 0,8	3 -17,5	5 -0,1	0,2		0'6-		0,0	9,7-	
Fahrzeughalle Oberlicht 1	2	141	75,0	21	8,73	51,0	0,0	0,0	0 -54,0	.,0 -1,0	0 -18,7		1,2	-14,8	0'6-		0,0	-23,8	
Fahrzeughalle Oberlicht 2	2	129	75,0	21	8'29	51,0	0,0	0,0	0 -53,2	6'0- 7'	9 -18,7	7 -0,1	0,8	-14,4	0,6-		0,0	-23,5	
Fahrzeughalle Oberlicht 3	2	116	75,0	21	8,73	51,0	0,0	0,0	0 -52,3	6'0- 6'	9 -18,4	4 -0,1	0,5	-13,5	0,6-		0,0	-22,5	
Fahrzeughalle Oberlicht 4	2	104	75,0	21	8,73	51,0	0,0	0,0	0 -51,3		8 -18,5	5 -0,1	0,0	-13,0	0'6-		0,0	-22,0	
Fahrzeughalle Oberlicht 5	2	93	75,0	21	8'29	51,0	0,0	0,0	0 -50,3	9'0- 6'	8 -18,7	7 -0,1	0,0	-12,1	0,6-		0,0	-21,2	
Fahrzeughalle Tore tags	353	115	75,0	0	100,5	75,0	0,0	0,0	0 -52,2	2,2 0,3	3 -23,7	9'0- 2	9,0	24,8	0'6-		0,0	15,7	
Klimaaußengeräte		87			58,0	28,0	0,0	0,0	0 -49,8		1 -16,8		.,3	9,7-	0,0	0,0	0,0	9,7-	-7,6
Kommunikation Übungen	2230	122			83,0	49,5	3,6	0,0	0 -52,8) -23,6		0,3	6,4	0,6-		0,0	1,0	
Pkw Fahrten		155			56,2	47,5	0,0	0,0	0 -54,8	.,8 -0,2	2 0,0	-1,1	2,9	3,0	2,7	14,8	0,0	5,8	17,8
RLT Anlage 6		151			75,0	75,0	0,0	0,0	0 -54,6			4 -0,6	0,0	3,4	0,0	0,0	0,0	3,4	3,4
RLT-Anlage 4		135			75,0	75,0	0,0	0,0	0 -53,6		0 -16,8	9,0-	-,	5,1	0,0	0,0	0,0	5,1	5,1
Übungen Kleingeräte	294	148			100,00	75,3	0,0	0,0	0 -54,4		7 -24,2	2 -2,1	0,3	20,3	-12,0		0,0	14,2	
Übungen Lkw Leerlauf	1597	114			94,0	62,0	0,0	0,0	0 -52,1		1 -22,4	4 -0,5	0,2	19,2	-15,1		0,0	4,2	
Übungen Rangieren	1597	114			92,8	8,09	0,0	0,0	0 -52,1	1,1 0,0		6 -0,5	0,5	17,8	-3,0		0,0	14,8	
Wärmepumpe		148			0,09	0,09	0,0	0,0	0 -54,4		0 -15,9	9'0- 6	0,0	-10,9	0,0	0,0	0,0	-10,9	-10,9
Werkstatt Übungen	34	62	80,0	0	95,4	0,08	0,0	0,0	0 -48,9			6 -1,4	0,0	21,3	0,6-		0,0	12,3	
ZwLager Abkippen	1456	32			89,2	9,75	8,0	0,0	0 -41,0		2 -9,7	7 -0,1	0,5	38,7			0,0	47,7	
ZwLager Lkw-Fahrten	-	40			83,4	63,0	0,0	0,0	0 -43,1	1,1 -0,1	1 -5,5	5 -0,2	6,0	35,0			0,0	36,1	
ZwLager Lkw-Rangieren	2876	49			87,4	52,8	0,0	0,0	0 -44,9		2 -6,5	5 -0,2	9,0	36,2			0,0	37,3	
ZwLager Radlader	2876	49			107,0	72,4	0,0	0,0	0 -44,9		2 -6,6	5 -0,3	9,0	55,5	-2,0		0,0	53,4	
ZwLager Radlader-RFW	2876	49			104,0	69,4	0,0	0,0	0 -44,9	.,9 0,5	5 -8,0	0,8	6,0	51,7	-5,1		0,0	46,7	
DRK Parkplatz	288	569			79,0	54,4	0,0	0,0	0 -59,6			2 -0,4	1,1	2,9	-6,0	-3,0	0,0	-3,1	-0,1
Parkplatz Übungen	2345	84		\dashv	89,1	55,3	0,0	0,0	0 -49,1	,1 -0,2	2 -8,7	7 -0,3	2,0	32,7	-15,1	-3,0	0,0	17,7	29,7

Ergebnisnr.: 4

32
ge ⊿
nla
⋖

Schallquelle	I oder S	S	Li	Rw	Lw	L'w	조	노	왕 	Adiv	Agr	Abar	Aatm	dLrefl	FS	dLw(LrT)	dLw(LrN)	ZR(LrT)	LrT	LrN
																Tag		Tag	Tag	
	m,m²	E	dB(A)	dB	dB(A)	dB(A)	дB	dB	dB	dВ	dВ	ф	dВ	dB	dB(A)	dВ	dB	dB	dB(A)	dB(A)
Kleemattstraße 11 O 1.0G N RW,	RW,T 55 dB(A)		RW,N 40 dB(A)		RW,T,max 85 dB(A)		RW,N,max	9	dB(A) Lr	LrT 53,6 dE	dB(A) Lri	LrN 34,6 dE	dB(A) LT,	LT,max 63,9	dB(A)	LN,max 53,8 d	dB(A)			
Ausblasöffnung Abgasabsaugung		81			75,0	75,0	0,0	0,0	0	-49,2	8,0	-16,0	-0,2	0,0	10,4	-6,0	0,9-	1,9	6,3	4,4
Deflektorhaube Abluft 1		134			75,0	75,0	0,0	0,0	<u> </u>	-53,5	8,0	-15,3	-0,3	4,1	8,1	0,0	0,0	1,9	10,1	8,1
Deflektorhaube Abluft 2		122			75,0	75,0	0,0	0,0	· 0	-52,7	8,0	-15,6	6,0-	1,7	6,8	0,0	0,0	1,9	10,8	8,9
DRK Fahrten	63	173			71,0	53,0	0,0	0,0	· 0	-55,7	-0,4	-1,1	-,7	2,0	14,5	-3,0	3,0	1,9	13,4	17,5
DRK Transporter Rangieren	300	187			68,2	43,4	0,0	0,0	· 0	-56,4	-0,4	-4,2	-,7	3,2	9,2	-3,0	3,0	1,9	8,1	12,2
Fahrzeughalle Dach	1090	92	75,0	35	69,2	38,8	0,0	0,0		-48,6	6,0	-12,6	0,0	0,1	0,6	0,6-		0,9	0,9	
Fahrzeughalle Oberlicht 1	2	20	75,0	21	8,75	51,0	0,0	0,0	· 0	-45,0	8,0	-16,1	-0,1	0,0	-2,6	0,6-		0,0	-5,6	
Fahrzeughalle Oberlicht 2	2	63	75,0	21	8,75	51,0	0,0	0,0	· 0	-47,0	8,0	-14,6	-0,1	0,0	-3,2	0,6-		0,9	-6,2	
Fahrzeughalle Oberlicht 3	2	11	75,0	21	8,73	51,0	0,0	0,0	· 0	-48,7	2,0	-14,2	1,0	0,0	-4,5	0,6-		0,9	-7,5	
Fahrzeughalle Oberlicht 4	2	06	75,0	21	8,75	51,0	0,0	0,0	· 0	-50,1	2,0	-14,0	1,0	0,0	-5,6	0,6-		0,9	-8,7	
Fahrzeughalle Oberlicht 5	2	104	75,0	21	8,75	51,0	0,0	0,0	· 0	-51,3	2,0	-13,8	-0,1	0,2	-6,5	0,6-		0,9	9,6-	
Fahrzeughalle Tore tags	353	17	75,0	0	100,5	75,0	0,0	0,0	· 0	-48,0	9,0	-17,1	-0,2	1,5	37,3	0,6-		0,9	34,2	
Klimaaußengeräte		108			58,0	58,0	0,0	0,0	<u> </u>	-51,6	8,0	-15,8	-0,5	7,2	-7,4	0,0	0,0	1,9	-5,4	-7,4
Kommunikation Übungen	2230	63			83,0	49,5	3,6	0,0	 	-47,0	4,0	<u>-,</u>	-0,3	0,2	35,3	0'6-		0,9	35,9	
Pkw Fahrten		49			56,2	47,5	0,0	0,0	· 0	-44,7	0,0	0,0	4,0-	0,1	11,3	2,7	14,8	0,0	14,0	26,1
RLT Anlage 6		4			75,0	75,0	0,0	0,0	 	-43,2	6,0	-6,2	-0,5	0,0	26,2	0,0	0,0	1,9	28,2	26,2
RLT-Anlage 4		99			75,0	75,0	0,0	0,0	 	-45,9	6,0	-16,1	1,0	0,0	13,7	0,0	0,0	1,9	15,7	13,7
Übungen Kleingeräte	294	53			100,0	75,3	0,0	0,9	0	-45,4	0,5	4,1-	-, '-	4,0	53,1	-12,0		0,9	53,0	
Übungen Lkw Leerlauf	1597	22			94,0	62,0	0,0	0,0	 	-48,7	0,0	-2,6	-0,4	0,3	42,6	-15,1		0,9	33,5	
Übungen Rangieren	1597	11			95,8	8,09	0,0	0,0	· 0	-48,7	0,0	-2,6	4,0-	0,3	41,4	-3,0		1,9	40,3	
Wärmepumpe		43			0,09	0,09	0,0	0,0	· 0	-43,7	6,0	-6,4	-0,5	0,0	10,6	0,0	0,0	1,9	12,6	10,6
Werkstatt Übungen	34	131	80,0	0	95,4	0,08	0,0	0,0	 	-53,3	1,0	-20,7	-1,6	0,1	20,7	0'6-		0,9	17,7	
ZwLager Abkippen	1456	202			89,2	9,73	8,0	0,0	<u> </u>	-57,1	-0,8	-16,9	-0,5	0,4	14,2	1,1		1,0	24,3	
ZwLager Lkw-Fahrten	7	197			83,4	63,0	0,0	0,0	 	-56,9	-0,4	-17,0	-0,5	۲,	10,0	1,		1,0	12,0	
ZwLager Lkw-Rangieren	2876	206			87,4	52,8	0,0	0,0	 	-57,3	-0,3	9,6-	6,0-	0,4	19,6	1,1		1,0	21,6	
ZwLager Radlader	2876	206			107,0	72,4	0,0	0,0	0	-57,3	-0,4	-9,7	1,1	0,3	38,9	-2,0		0,0	36,8	
ZwLager Radlader-RFW	2876	206			104,0	69,4	0,0	0,0	0	-57,3	9,0	-11,2	-2,6	4,0	33,9	-5,1		0,0	28,9	
DRK Parkplatz	288	158			0,67	54,4	0,0	0,0	0	-55,0	8,0-	0,0	-1,2	1,5	23,4	-6,0	-3,0	1,9	19,3	20,4
Parkplatz Übungen	2345	8		\dashv	89,1	55,3	0,0	0,0	0	-49,2	-0,5	-3,6	-0,4	0,4	35,7	-15,1	-3,0	0,0	20,6	32,7

Heine + Jud - Ingenieurbüro für Umweltakustik

SoundPLAN 8.1

Anlage A33
•

Schallquelle	I oder S	S	ij	Α Š	Lw	N,7	조	KT	Ko /	Adiv ,	Agr	Abar	Aatm	dLrefl	Ls	dLw(LrT)	dLw(LrN)	ZR(LrT)	LrT	LrN
																Tag		Tag	Tag	
	m,m²	E	dB(A)	ф	dB(A)	dB(A)	ф	dB	ф В	dB	ф В	ф	ф	dВ	dB(A)	dB	dB	dB	dB(A)	dB(A)
Kleemattstraße 11 W EG N RW,T	. 55 dB(A)	RW,N4	RW,N 40 dB(A)	RW,T,ı	RW,T,max 85 dB(A)		RW,N,max 60	(60 dB(A)	ː	53,9 dB(A)	를	34,0 dB(A)	A) LT,max	63,8	dB(A) LN,	LN,max 53,6 dB(A)	(¥			
Ausblasöffnung Abgasabsaugung		82			75,0	75,0	0,0	0,0	0	-49,3	-0,1	-17,7	-0,2	0,0	7,7	-6,0	0'9-	1,9	3,6	1,7
Deflektorhaube Abluft 1		134			75,0	75,0	0,0	0,0	0	-53,6		-17,1	-0,3	2,1	6,5	0,0	0,0	0,1	7,8	5,9
Deflektorhaube Abluft 2		123			75,0	75,0	0,0	0,0	0	-52,8	-0,2	-17,4	-0,3	2,3	9'9	0,0	0,0	0,1	8,5	9'9
DRK Fahrten	63	170			71,0	53,0	0,0	0,0	0	-55,6		-1,1	7,7	2,0	14,8	-3,0	3,0	6,1	13,7	17,8
DRK Transporter Rangieren	300	184			68,2	43,4	0,0	0,0	0	-56,3	-0,5	-4,2	-1,2	3,2	9,5	-3,0	3,0	1,9	8,4	12,5
Fahrzeughalle Dach	1090	77	75,0	35	69,2	38,8	0,0	0,0	0	-48,7	8,0	-13,9	0,0	0,2	2,2	0'6-		0,9	4,5	
Fahrzeughalle Oberlicht 1	2	51	75,0	72	8,73	51,0	0,0	0,0	0	-45,2	-0,7	-16,1	-0,1	0,0	6,4	0'6-		0,9	-7,3	
Fahrzeughalle Oberlicht 2	2	2	75,0	21	8,73	51,0	0,0	0,0	0	-47,2	6,0-	-15,0	-0,1	0,0	-5,4	0'6-		0,9	-8,4	
Fahrzeughalle Oberlicht 3	2	78	75,0	77	8,73	51,0	0,0	0,0	0	-48,8	<u>-</u>	-14,7	-0,1	0,0	6,9-	0'6-		0,9	6,6-	
Fahrzeughalle Oberlicht 4	2	91	75,0	77	57,8	51,0	0,0	0,0	0	-50,2		-14,5	-0,1	0,0	-8,2	0'6-		0,9	-11,2	
Fahrzeughalle Oberlicht 5	2	104	75,0	21	8'29	51,0	0,0	0,0	0	-51,4		-14,3	-0,1	0,3	0,6-	0'6-		0,9	-12,0	
Fahrzeughalle Tore tags	353	71	75,0	0	100,5	75,0	0,0	0,0	0	-48,1	0,2	-15,4	-0,2	1,2	38,2	0'6-		0,9	35,1	
Klimaaußengeräte		109			28,0	28,0	0,0	0,0	0	-51,7		-17,5	-0,3	2,0	7'6-	0,0	0,0	0,1	-7,8	-9,7
Kommunikation Übungen	2230	62			83,0	49,5	3,6	0,0	0	-46,9		9,0-	-0,3	0,2	35,4	0,6-		0,9	35,9	
Pkw Fahrten		51			56,2	47,5	0,0	0,0	_ _	-45,1	-0,3	0,0	-0,4	0,3	10,8	2,7	14,8	0,0	13,5	25,5
RLT Anlage 6		42			75,0	75,0	0,0	0,0	0			-8,0	-0,2	0,0	23,5	0,0	0,0	0,1	25,4	23,5
RLT-Anlage 4		22			75,0	75,0	0,0	0,0	0	-46,1		-17,8	-0,2	0,0	11,0	0,0	0,0	0,1	12,9	11,0
Übungen Kleingeräte	294	52			100,0	75,3	0,0	0,0	0	-45,3	0,4	6,0-	7,7	4,0	53,4	-12,0		0,9	53,4	
Übungen Lkw Leerlauf	1597	22			94,0	62,0	0,0	0,0	0	-48,7		4,1-	-0,5	0,3	43,4	-15,1		0,9	34,3	
Übungen Rangieren	1597	14			92,8	8,09	0,0	0,0	_ _	-48,7	-0,5	-1,4	-0,5	0,3	42,2	-3,0		0,1	1,14	
Wärmepumpe		45			0,09	0,09	0,0	0,0	_ _	-44,0		-8,2	-0,5	0,0	7,8	0,0	0,0	0,1	8,6	2,8
Werkstatt Übungen	34	131	80,0	0	95,4	0,08	0,0	0,0	0	-53,4	<u></u>	-18,2	-1,6	0,0	23,4	0'6-		0,9	20,3	
ZwLager Abkippen	1456	203			89,2	9,75	8,0	0,0	 		-0,7	-19,0	9,0-	0,5	12,2	1,1		1,0	22,2	
ZwLager Lkw-Fahrten	-	199			83,4	63,0	0,0	0,0	0	- 0'29-	-0,2	-18,9	-0,5	2,2	9,1	Ţ,		1,0	1,7	
ZwLager Lkw-Rangieren	2876	208			87,4	52,8	0,0	0,0	_ _	- 27,3	-0,1	-13,6	8,0-	2,0	16,2	1,		1,0	18,3	
ZwLager Radlader	2876	208			107,0	72,4	0,0	0,0	0	-57,3		-13,8	6,0-	2,0	35,4	-2,0		0,0	33,4	
ZwLager Radlader-RFW	2876	208			104,0	69,4	0,0	0,0	0	-57,3	6,0	-16,0	-2,2	6,0	30,2	-5,1		0,0	25,2	
DRK Parkplatz	288	156			79,0	54,4	0,0	0,0	0	-54,9	0,0	0,0	1,7	4,1	24,5	-6,0	-3,0	1,9	20,4	21,5
Parkplatz Übungen	2345	83		\dashv	89,1	55,3	0,0	0,0	0	-49,4	-,0	-4,2	-0,4	0,4	35,3	-15,1	-3,0	0,0	20,2	32,3

Ergebnisnr.: 4 SoundPLAN 8.1

—
434
•
lage
ă
۱
⋖

Schallquelle	I oder S	S	ij	R _W	Lw	L'w	조	ᅜ	ջ -	Adiv	Agr	Abar	Aatm	dLrefl	ΓS	dLw(LrT)	dLw(LrN)	ZR(LrT)	LrT	LrN
																Tag		Tag	Tag	
	m,m²	ш	dB(A)	dB	dB(A)	dB(A)	dB	dB	dB	dВ	dВ	dВ	dB	dB	dB(A)	dB	dB	dB	dB(A)	dB(A)
Müßmattstr. 72 3.0G O RW,T 55 dB(A)		RW,N 40 dB(A)		۷,T,max	RW,T,max 85 dB(A)		RW,N,max 60 dB(A)		LrT 54,:	3 dB(A)	LrN 30,5	30,5 dB(A)	LT,max 6	62,4 dB(A)		LN,max 48,0 dB(A)				
Ausblasöffnung Abgasabsaugung		100			75,0	75,0	0,0	0,0	0	-51,0	1,0	-1,2	-1,0	0,0	22,8	0'9-	-6,0	1,9	18,7	16,7
Deflektorhaube Abluft 1		151			75,0	75,0	0,0	0,0	0	-54,6	1,0	-1,7	-1,5	0,0	18,3	0,0	0,0	0,1	20,2	18,3
Deflektorhaube Abluft 2		140			15,0	75,0	0,0	0,0	0	-53,9	1,0	-1,6	4,1-	0,0	19,2	0,0	0,0	6,1	21,1	19,2
DRK Fahrten	63	134			71,0	53,0	0,0	0,0	0	-53,6	-0,4	-16,9	-0,4	8,0	9,0	-3,0	3,0	6,1	9,0-	3,5
DRK Transporter Rangieren	300	148			68,2	43,4	0,0	0,0	0	-54,4	-0,4	-18,7	-0,5	1,0	8,4	-3,0	3,0	6,1	-5,9	-1,8
Fahrzeughalle Dach	1090	86	75,0	35	69,2	38,8	0,0	0,0	0	-50,8	1,2	-5,1	-0,2	0,0	14,3	0.6-		0,9	11,3	
Fahrzeughalle Oberlicht 1	2	75	75,0	77	8,73	51,0	0,0	0,0	0	-48,5	<u></u>	-10,4	-0,1	0,0	-0,1	0.6-		0,9	-3,1	
Fahrzeughalle Oberlicht 2	2	98	75,0	21	8,73	51,0	0,0	0,0		-49,7	1,1	-4,0	-0,1	0,0	2,0	0.6-		0,9	2,0	
Fahrzeughalle Oberlicht 3	2	26	75,0	77	8,73	51,0	0,0	0,0	0	-50,7	<u></u>	-4,5	-0,2	0,0	3,5	0.6-		0,9	0,5	
Fahrzeughalle Oberlicht 4	2	109	75,0	77	8,73	51,0	0,0	0,0	0	-51,7	<u></u>	-4,5	-0,2	0,0	2,4	0.6-		0,9	9,0-	
Fahrzeughalle Oberlicht 5	2	121	75,0	77	8,73	51,0	0,0	0,0	0	-52,7	<u></u>	-4,5	-0,2	0,0	1,5	0.6-		0,9	-1,6	
Fahrzeughalle Tore tags	353	6	75,0	0	100,5	75,0	0,0	0,0	0	-50,1	9,0	-0,2	9,0-	0,0	50,3	0'6-		0,9	47,3	
Klimaaußengeräte		126			58,0	58,0	0,0	0,0	0	-53,0	1,0	4,	-1,3	0,0	3,3	0,0	0,0	6,1	5,3	3,3
Kommunikation Übungen	2230	72			83,0	49,5	3,6	0,0	0	-48,2	0,4	-0,4	-0,3	0,3	34,8	0'6-		0,9	35,3	
Pkw Fahrten		88			56,2	47,5	0,0	0,0	0	-49,9	-0,2	0,0	9,0-	9,0	0,9	2,7	14,8	0,0	8,8	20,8
RLT Anlage 6		29			75,0	75,0	0,0	0,0	0	-47,6	1,	-2,0	6,0-	0,0	25,6	0,0	0,0	1,9	27,6	25,6
RLT-Anlage 4		8			75,0	75,0	0,0	0,0	0	-49,2	1,0	-9,2	-0,2	0,0	17,5	0'0	0,0	0,1	19,4	17,5
Übungen Kleingeräte	294	65			100,0	75,3	0,0	0,9	0	-47,2	0,5	0,0	-1,3	2,0	52,6	-12,0		0,9	52,6	
Übungen Lkw Leerlauf	1597	06			94,0	62,0	0,0	0,0	0	-50,1	0,0	-0,1	9,0-	0,5	43,8	-15,1		0,9	34,7	
Übungen Rangieren	1597	06			92,8	8,09	0,0	0,0	0	-50,1	0,0	-0,1	9,0-	0,5	42,6	-3,0		1,9	41,5	
Wärmepumpe		72			0,09	0,09	0,0	0,0	0	-48,2	1,	-2,1	6,0-	0,0	8,6	0,0	0,0	1,9	11,8	8,6
Werkstatt Übungen	34	144	80,0	0	95,4	0,08	0,0	0,0	0	-54,1	1,0	0,0	-2,3	0,5	40,3	0'6-		0,9	37,3	
ZwLager Abkippen	1456	229			89,2	9,75	8,0	0,0	0	-58,2	6,0-	6,9-	-1,0	0,2	22,4	1,1		1,0	32,4	
ZwLager Lkw-Fahrten	7	225			83,4	63,0	0,0	0,0	0	-58,0	-0,5	9'2-	<u>L</u> ,	9,0	16,9	1,		1,0	18,9	
ZwLager Lkw-Rangieren	2876	236			87,4	52,8	0,0	0,0	0	-58,4	-0,5	-7,3	-1,0	0,2	20,3	1,1		1,0	22,3	
ZwLager Radlader	2876	236			102,0	72,4	0,0	0,0	0	-58,4	-0,5	-7,4	-1,2	0,2	39,6	-2,0		0,0	37,6	
ZwLager Radlader-RFW	2876	236			104,0	69,4	0,0	0,0	0	-58,4	4,0	-9,1	-2,6	0,2	34,5	-5,1		0,0	29,4	
DRK Parkplatz	288	120			0,67	54,4	0,0	0,0	0	-52,6	-0,2	-11,8	-0,1	9,0	14,9	-6,0	-3,0	6,1	10,9	11,9
Parkplatz Übungen	2345	116			89,1	55,3	0,0	0,0	0	-52,3	-0,1	-7,9	-0,5	0,1	28,4	-15,1	-3,0	0,0	13,3	25,4

Ergebnisnr.: 4

Anlage A35	

Schallquelle	I oder S	S	:	Rw	Lw	M, J	조	ΚΤ	Ko	Adiv	Agr	Abar	Aatm	dLrefl	FS	dLw(LrT)	dLw(LrN)	ZR(LrT)	LrT	LrN
				•								,				Tag		Tag	Tag	
	m,m²	E	dB(A)	В	dB(A)	dB(A)	g B	dB	ф	ф	ф	ф	dB	dB	dB(A)	dВ	dB	dB	dB(A)	dB(A)
Müßmattstraße 55 7.OG N RW,T 5	55 dB(A)	RW,N 40 dB(A)) dB(A)	RW,T,r	RW,T,max 85 dB(A)		,N,max	RW,N,max 60 dB(A)	LT.	48,8 dB(A)	Z Z	32,3 dB(A)	=	,max 59,9 dE	dB(A) LN,max	nax 51,7 dB(A)	A)			
Ausblasöffnung Abgasabsaugung		147			75,0	75,0	0,0	0,0		-54,3	1,0	0,0	-1,0	0,0	20,6	-6,0	-6,0	1,9	16,5	14,6
Deflektorhaube Abluft 1		192			75,0	75,0	0,0	0,0	0	-56,7	1,0	0,0	-1,2	0,0	18,1	0,0	0,0	0, 0,	20,0	18,1
Deflektorhaube Abluft 2		181			75,0	75,0	0,0	0,0	0	-56,1	1,0	-0,1	-1,2	0,0	18,7	0,0	0,0	6,1	20,6	18,7
DRK Fahrten	63	82			71,0	53,0	0,0	0,0	0	-49,3	-0,5	-1,6	-0,5	2,0	21,3	-3,0	3,0	6,1	20,2	24,3
DRK Transporter Rangieren	300	96			68,2	43,4	0,0	0,0	0	9,03-	6,0	-7,5	9,0-	4,3	13,6	-3,0	3,0	1,9	12,5	16,6
Fahrzeughalle Dach	1090	148	75,0	35	69,2	38,8	0,0	0,0	0	-54,4	1,2	-2,4	-0,4	0,0	13,2	0,6-		0,9	10,2	
Fahrzeughalle Oberlicht 1	2	129	75,0	77	8,73	51,0	0,0	0,0	0	-53,2	1,	-3,0	-0,2	0,0	2,5	0,6-		0,9	9,0-	
Fahrzeughalle Oberlicht 2	2	137	75,0	7	8,73	51,0	0,0	0,0	0	-53,7	<u></u>	-3,4	-0,2	0,0	1,6	0,6-		0,9	4,1-	
Fahrzeughalle Oberlicht 3	2	145	75,0	7	8,73	51,0	0,0	0,0	0	-54,2	<u></u>	-1,2	-0,3	0,0	3,2	0,6-		0,9	0,1	
Fahrzeughalle Oberlicht 4	2	154	75,0	7	8,73	51,0	0,0	0,0	0	-54,8	<u></u>	-1,3	-0,3	0,0	2,6	0,6-		0,9	-0,5	
Fahrzeughalle Oberlicht 5	2	164	75,0	77	8,73	51,0	0,0	0,0	0	-55,3	1,	-1,3	-0,3	0,0	2,0	0,6-		0,9	-1,1	
Fahrzeughalle Tore tags	353	138	75,0	0	100,5	75,0	0,0	0,0	0	-53,8	9,0	9,0-	8,0-	0,0	45,9	0'6-		0,9	42,8	
Klimaaußengeräte		170			58,0	58,0	0,0	0,0	0	-55,6	1,0	0,0	1,1	0,0	2,3	0,0	0,0	6,1	4,2	2,3
Kommunikation Übungen	2230	122			83,0	49,5	3,6	0,0	0	-52,7	0,2	9,0-	9,0-	0,5	29,8	0,6-		0,9	30,4	
Pkw Fahrten		150			56,2	47,5	0,0	0,0	0	-54,5	-0,4	0,0	-1,0	0,0	0,3	2,7	14,8	0,0	3,1	15,1
RLT Anlage 6		123			75,0	75,0	0,0	0,0	0	-52,8	<u>L</u> ,	-0,1	6,0-	0,0	22,3	0'0	0,0	6,1	24,5	22,3
RLT-Anlage 4		135			75,0	75,0	0,0	0,0	0	-53,6	1,0	0,0	-1,0	0,0	21,5	0'0	0,0	6,1	23,4	21,5
Übungen Kleingeräte	294	113			100,0	75,3	0,0	0,0	0	-52,1	4,0	-2,4	-1,9	6,0	44,8	-12,0		0,9	44,8	
Übungen Lkw Leerlauf	1597	135			94,0	62,0	0,0	0,0	0	-53,6	-0,1	-0,5	6'0-	0,4	39,4	-15,1		0,9	30,3	
Übungen Rangieren	1597	135			92,8	8,09	0,0	0,0	0	-53,6	0,0	-0,5	6,0-	0,4	38,2	-3,0		1,9	37,1	
Wärmepumpe		129			0,09	0,09	0,0	0,0	0	-53,2	Ĺ	-0,1	6,0-	0,0	8,9	0,0	0,0	1,9	8,8	8,9
Werkstatt Übungen	34	179	80,0	0	95,4	80,0	0,0	0,0	0	-56,1	1,0	0,0	-2,8	0,3	37,8	0'6-		0,9	34,8	
ZwLager Abkippen	1456	277			89,2	9,75	8,0	0,0	0	-59,8	6,0	-3,6	-1,6	0,1	23,3	1,1		1,0	33,4	
ZwLager Lkw-Fahrten		274			83,4	63,0	0,0	0,0	0	-59,7	-0,5	-3,9	-1,6	0,4	18,2	1,1		1,0	20,2	
ZwLager Lkw-Rangieren	2876	285			87,4	52,8	0,0	0,0	0	-60,1	-0,5	-2,1	-1,8	0,1	22,9	1,1		1,0	24,9	
ZwLager Radlader	2876	285			107,0	72,4	0,0	0,0	0	-60,1	-0,5	-2,0	-2,4	0,1	42,0	-2,0		0,0	40,0	
ZwLager Radlader-RFW	2876	285			104,0	69,4	0,0	0,0	0	-60,1	4,0	-1,9	4,5	0,1	37,9	-5,1		0,0	32,9	
DRK Parkplatz	788	02			0,67	54,4	0,0	0,0	0	-47,9	0,0	0,0	-0,5	1,3	31,9	-6,0	-3,0	1,9	27,8	28,8
Parkplatz Übungen	2345	171			89,1	55,3	0,0	0,0		-55,7	-0,2	-9,3	9,0-	0,0	23,3	-15,1	-3,0	0,0	8,2	20,3

Ergebnisnr.: 4

Anlage A36
I

Schallquelle	I oder S	S	ij	R	Lw	L'w	조	Ϋ́	S S	Adiv	Agr	Abar	Aatm	dLrefl	Ls	dLw(LrT)	dLw(LrN)	ZR(LrT)	LrT	Lr
																Tag		Tag	Tag	
	m,m²	æ	dB(A)	dВ	dB(A)	dB(A)	dВ	dB	dB	dB	dВ	dВ	dB	dB	dB(A)	dВ	dB	dB	dB(A)	dB(A)
Römerstraße 24 1.OG NW RW,T 5	55 dB(A)	RW,N 4	RW,N 40 dB(A)	RW,T,	RW,T,max 85 dB(A)		,N,max	RW,N,max 60 dB(A)	LrT	45,3 dB(A)	LrN	39,7 dB(A)	A) LT,max	67,1	dB(A) LN,max	max 58,1 dB(A)	(+			
Ausblasöffnung Abgasabsaugung		80			75,0	75,0	0,0	0,0	0	-49,0	8,0	-13,5	-0,2	0'0	13,1	-6,0	-6,0	1,9	0,6	7,1
Deflektorhaube Abluft 1		128			75,0	75,0	0,0	0,0	0	-53,2	8,0	-4,2	-1,2	0,0	17,2	0,0	0,0	6,1	19,1	17,2
Deflektorhaube Abluft 2		118			75,0	75,0	0,0	0,0	0	-52,4	8,0	-4,7	6,0-	0,2	17,9	0,0	0,0	6,1	19,8	17,9
DRK Fahrten	63	202			71,0	53,0	0,0	0,0	0	-57,1	-0,3	-1,0	-1,3	1,9	13,2	-3,0	3,0	6,1	12,2	16,3
DRK Transporter Rangieren	300	216			68,2	43,4	0,0	0,0	0	-57,7	-0,3	-3,7	-1,3	2,7	6,7	-3,0	3,0	6,1	8,9	10,9
Fahrzeughalle Dach	1090	11	75,0	35	69,2	38,8	0,0	0,0	0	-48,7	6,0	-10,3	-0,1	0,1	11,0	0,6-		0,9	8,0	
Fahrzeughalle Oberlicht 1	2	20	75,0	21	8'29	51,0	0,0	0,0	0	-44,9	8,0	-16,2	-0,1	0,0	-2,6	0,6-		0,9	-5,7	
Fahrzeughalle Oberlicht 2	2	62	75,0	21	8,75	51,0	0,0	0,0	0	-46,8	2,0	-14,5	-0,1	0,0	-2,9	0,6-		0,9	-5,9	
Fahrzeughalle Oberlicht 3	2	75	75,0	77	8,73	51,0	0,0	0,0	0	-48,5	2,0	-11,8	-0,1	0,0	-1,8	0,6-		0,9	4,9	
Fahrzeughalle Oberlicht 4	2	88	75,0	21	57,8	51,0	0,0	0,0	0	-49,9	2,0	-6,0	-0,1	0,0	2,5	0,6-		0,9	9,0-	
Fahrzeughalle Oberlicht 5	2	101	75,0	21	57,8	51,0	0,0	0,0	0	-51,1	2,0	-5,7	-0,5	0,0	7,5	0.6-		0,9	-1,5	
Fahrzeughalle Tore tags	353	9/	75,0	0	100,5	75,0	0,0	0,0	0	-48,6	9,0	-22,8	-0,3	5,4	34,8	0,6-		0,9	31,7	
Klimaaußengeräte		104			58,0	58,0	0,0	0,0	0	-51,3	8,0	6,4-	8,0-	0,1	2,0	0,0	0,0	6,1	3,9	2,0
Kommunikation Übungen	2230	78			83,0	49,5	3,6	0,0	0	-48,8	0,3	-5,6	-0,3	0,5	29,2	0'6-		0,9	29,7	
Pkw Fahrten		22			56,2	47,5	0,0	0,0	0	-38,9	0,3	0,0	-0,5	0,0	17,5	2,7	14,8	0,0	20,3	32,3
RLT Anlage 6		42			75,0	75,0	0,0	0,0	0	-43,5	6,0	9,9-	-0,5	0,0	25,6	0,0	0,0	6,1	27,5	25,6
RLT-Anlage 4		53			75,0	75,0	0,0	0,0	0	-45,5	6,0	-16,1	-0,1	1,3	15,5	0,0	0,0	6,1	17,4	15,5
Übungen Kleingeräte	294	63			100,0	75,3	0,0	0,9	0	-47,0	0,5	-18,8	8,0-	3,6	37,5	-12,0		0,9	37,4	
Übungen Lkw Leerlauf	1597	98			94,0	62,0	0,0	0,0	0	-49,7	0,0	-18,2	-0,3	2,8	28,6	-15,1		0,9	19,6	
Übungen Rangieren	1597	98			92,8	8,09	0,0	0,0	0	-49,7	0,0	-18,5	-0,3	3,0	27,4	-3,0		0,1	26,3	
Wärmepumpe		39			0,09	0,09	0,0	0,0	0	-42,9	6,0	-7,2	-0,5	0,0	10,6	0,0	0,0	6,1	12,6	10,6
Werkstatt Übungen	34	131	0,08	0	95,4	80,0	0,0	0,0	0	-53,3	1,0	-24,6	-2,1	0,0	16,3	0'6-		0,9	13,3	
ZwLager Abkippen	1456	187			89,2	9,73	8,0	0,0	0	-56,4	-0,8	-4,6	-1,0	0,3	26,6	1,1		1,0	36,6	
ZwLager Lkw-Fahrten	<u></u>	181			83,4	63,0	0,0	0,0	0	-56,2	-0,4	-5,2	-1,0	0,4	21,2	1,1		1,0	23,2	
ZwLager Lkw-Rangieren	2876	188			87,4	52,8	0,0	0,0	0	-56,5	-0,4	-4,9	-1,0	0,2	24,8	1,1		1,0	26,8	
ZwLager Radlader	2876	188			107,0	72,4	0,0	0,0	0	-56,5	-0,4	-4,9	-1,3	0,2	44,1	-2,0		0,0	42,1	
ZwLager Radlader-RFW	2876	188			104,0	69,4	0,0	0,0	0	-56,5	0,5	-5,9	-2,8	0,3	39,6	-5,1		0,0	34,6	
DRK Parkplatz	288	188			79,0	54,4	0,0	0,0	0	-56,5	-0,7	0,0	4,1-	1,5	22,0	-6,0	-3,0	1,9	17,9	18,9
Parkplatz Übungen	2345	29			89,1	55,3	0,0	0,0	0	-47,1	-0,3	0,0	-0,5	0,2	41,4	-15,1	-3,0	0,0	26,3	38,4

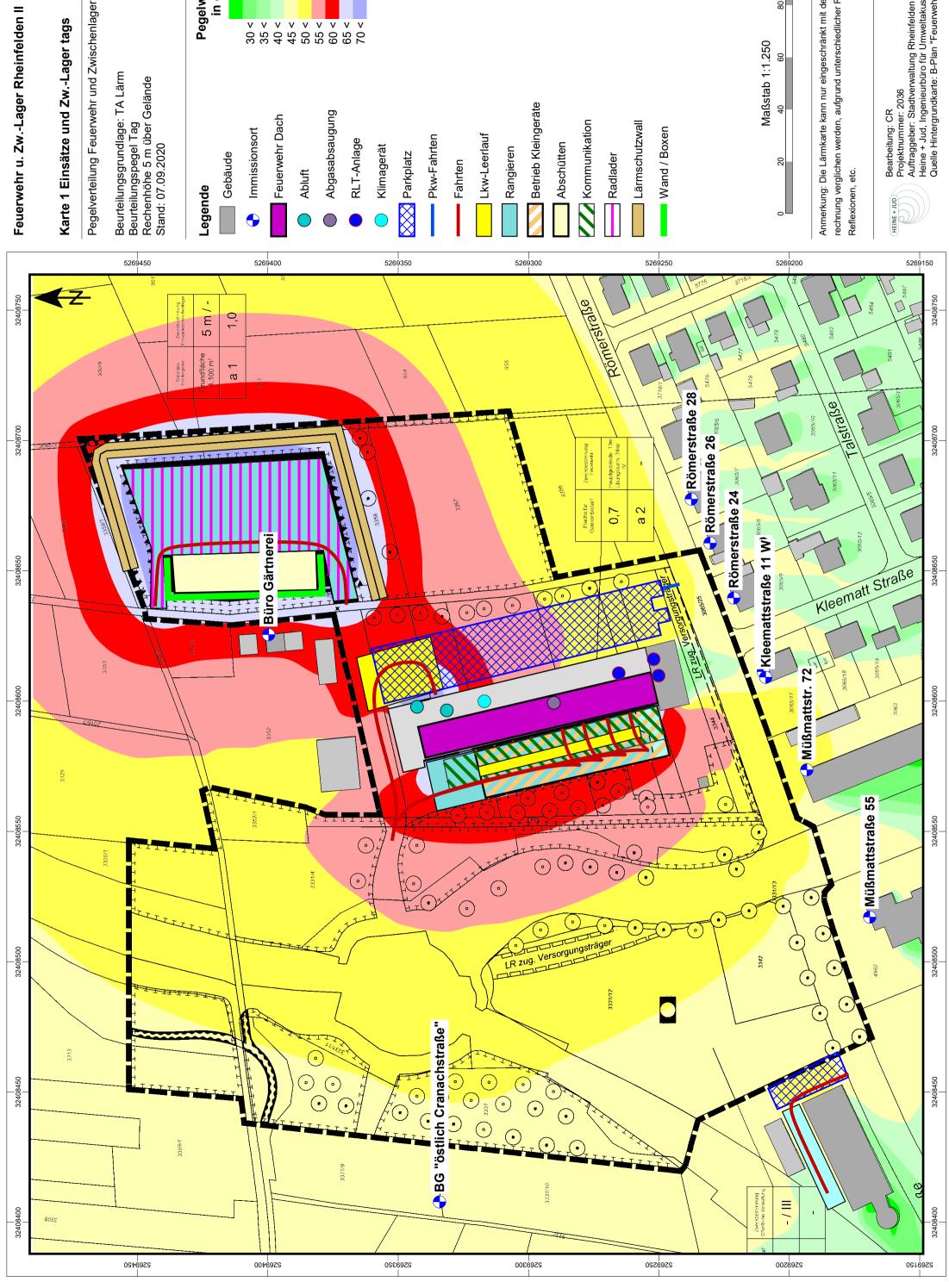
Ergebnisnr.: 4

Schalltechnische Untersuchung Feuerwehr u. Zw.-Lager Rheinfelden II - Teilpegelliste Ausbreitungsberechnung, Übungen -

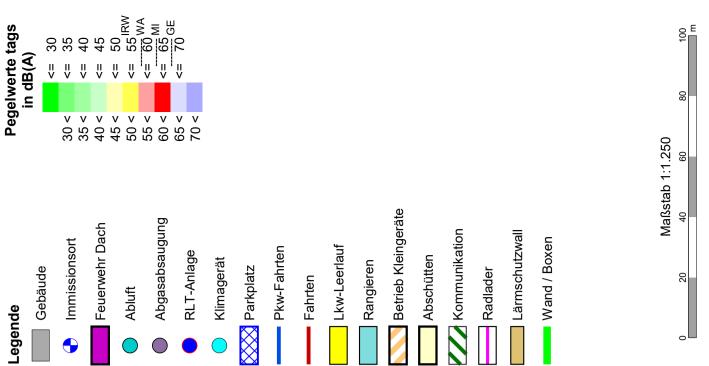
Schallquelle	I oder S	S	ij	Υ. «	Lw	N, T	조	호	Ko /	Adiv ,	Agr	Abar	Aatm	dLrefl	Ls	dLw(LrT)	dLw(LrN)	ZR(LrT)	LrT	٦ Z
																Tag		Tag	Tag	
	m,m²	٤	dB(A)	ф	dB(A)	dB(A)	В	dB	ф В	dB	д В	ф	dВ	dB	dB(A)	dB	dB	dB	dB(A)	dB(A)
Römerstraße 26 1.OG N RW,T 55	55 dB(A) R	RW,N 40 dB(A)	l	W,T,ma	RW,T,max 85 dB(A)	ı	RW,N,max 60 d	dB(A)	LrT 45,	45,2 dB(A)	LrN 39,	9 dB(A)	LT,max	63,9 dB(A)	v) LN,max	1x 58,6 dB(A)				
Ausblasöffnung Abgasabsaugung		98			75,0	75,0	0,0	0,0	0	-49,7	6,0	-4,6	-0,7	0,0	20,9	-6,0	0'9-	1,9	16,8	14,9
Deflektorhaube Abluft 1		129			75,0	75,0	0,0	0,0	_ _	-53,2	8,0	-, -,	-1,2	0,0	20,3	0,0	0,0	6,1	22,2	20,3
Deflektorhaube Abluft 2		120			75,0	75,0	0,0	0,0	0	-52,6	8,0	-3,8	4,1-	0,0	18,1	0,0	0,0	6,1	20,0	18,1
DRK Fahrten	63	224			71,0	53,0	0,0	0,0	0	- 0,83-	-0,3	6,0-	4,1-	2,0	12,4	-3,0	3,0	0,1	11,3	15,4
DRK Transporter Rangieren	300	239			68,2	43,4	0,0	0,0	0	- 28,2	-0,5	-3,4	4,1-	2,5	7,1	-3,0	3,0	0,1	6,1	10,2
Fahrzeughalle Dach	1090	87	75,0	35	69,2	38,8	0,0	0,0	0	-49,8	6,0	-6,1	-0,2	0,0	14,0	0,6-		0,9	11,0	
Fahrzeughalle Oberlicht 1	2	09	75,0	72	8,73	51,0	0,0	0,0	0	-46,6	8,0	-13,0	-0,1	0,0	<u></u>	0'6-		0,9	4,	
Fahrzeughalle Oberlicht 2	2	20	75,0	21	8'29	51,0	0,0	0,0	0	-47,9		-5,2	-0,1	0,0	5,4	0,6-		0,9	2,4	
Fahrzeughalle Oberlicht 3	2	8	75,0	21	8,73	51,0	0,0	0,0	0	-49,2	8,0	-4,8	-0,1	0,0	4,5	0.6-		0,9	7,5	
Fahrzeughalle Oberlicht 4	2	93	75,0	21	8,73	51,0	0,0	0,0	0	-50,3		-4,8	-0,1	0,0	8,8	0,6-		0,9	6,0	
Fahrzeughalle Oberlicht 5	5	105	75,0	21	8'29	51,0	0,0	0,0	0	-51,4	8,0	-4,7	-0,2	0,0	2,3	0,6-		0,9	8,0-	
Fahrzeughalle Tore tags	353	87	75,0	0	100,5	75,0	0,0	0,0	0	-49,8		-23,2	-0,4	0,2	28,0	0'6-		0,9	24,9	
Klimaaußengeräte		106			58,0	58,0	0,0	0,0	0	-51,5	6,0	-3,7	۲,3	0,0	2,4	0,0	0,0	6,1	4,3	2,4
Kommunikation Übungen	2230	93			83,0	49,5	3,6	0,0	0	-50,4		-8,4	-0,4	0,5	24,6	0,6-		0,9	25,2	
Pkw Fahrten		23			56,2	47,5	0,0	0,0	0	-38,1		0,0	-0,2	0,0	18,3	2,7	14,8	0,0	21,1	33,1
RLT Anlage 6		22			75,0	75,0	0,0	0,0	0	-45,8		-6,5	-0,3	0,0	23,3	0,0	0,0	6,1	25,2	23,3
RLT-Anlage 4		61			75,0	75,0	0,0	0,0	0	-46,7		-4,2	-0,7	0,0	24,2	0,0	0,0	6,1	26,2	24,2
Übungen Kleingeräte	294	78			100,0	75,3	0,0	0,0	0	-48,9		-22,1	-1,0	2,7	31,1	-12,0		0,9	31,0	
Übungen Lkw Leerlauf	1597	66			94,0	62,0	0,0	0,0	0	- 6'09-	-0,1	-19,6	-0,3	0,3	23,5	-15,1		0,9	4,4	
Übungen Rangieren	1597	66			92,8	8,09	0,0	0,0	0	-20,9	0,0	-19,8	-0,3	0,4	22,1	-3,0		1,9	21,0	
Wärmepumpe		20			0,09	0,09	0,0	0,0	0	-45,0		-4,8	-0,5	0,0	10,7	0,0	0,0	6,1	12,6	10,7
Werkstatt Übungen	34	135	80,0	0	95,4	0,08	0,0	0,0	0	-53,6		-24,7	-2,2	0,0	15,8	0'6-		0,9	12,8	
ZwLager Abkippen	1456	177			89,2	9,73	8,0	0,0	0	- 6'59		-4,5	-1,0	9,0	27,4	<u>-,</u>		1,0	37,4	
ZwLager Lkw-Fahrten	-	171			83,4	63,0	0,0	0,0	0	- 9'59'	-0,4	-5,8	6,0-	8,0	21,5	1,		1,0	23,6	
ZwLager Lkw-Rangieren	2876	177			87,4	52,8	0,0	0,0	0	- 6'55-	-0,4	-5,0	6,0-	0,5	25,6	1,		1,0	27,6	
ZwLager Radlader	2876	177			107,0	72,4	0,0	0,0	0	- 22,9	-0,5	-5,0	-1,2	0,5	44,9	-2,0		0,0	42,8	
ZwLager Radlader-RFW	2876	177			104,0	69,4	0,0	0,0	0	-22,9	0,4	-6,0	-2,7	9,0	40,4	-5,1		0,0	35,3	
DRK Parkplatz	288	210			79,0	54,4	0,0	0,0	<u> </u>		-0,7	-0,4	-1,7	1,6	20,4	-6,0	-3,0	1,9	16,3	17,4
Parkplatz Übungen	2345	49			89,1	55,3	0,0	0,0	0	-47,1	-0,3	0,0	-0,5	0,3	41,4	-15,1	-3,0	0,0	26,4	38,4

Ergebnisnr.: 4

Heine + Jud - Ingenieurbüro für Umweltakustik

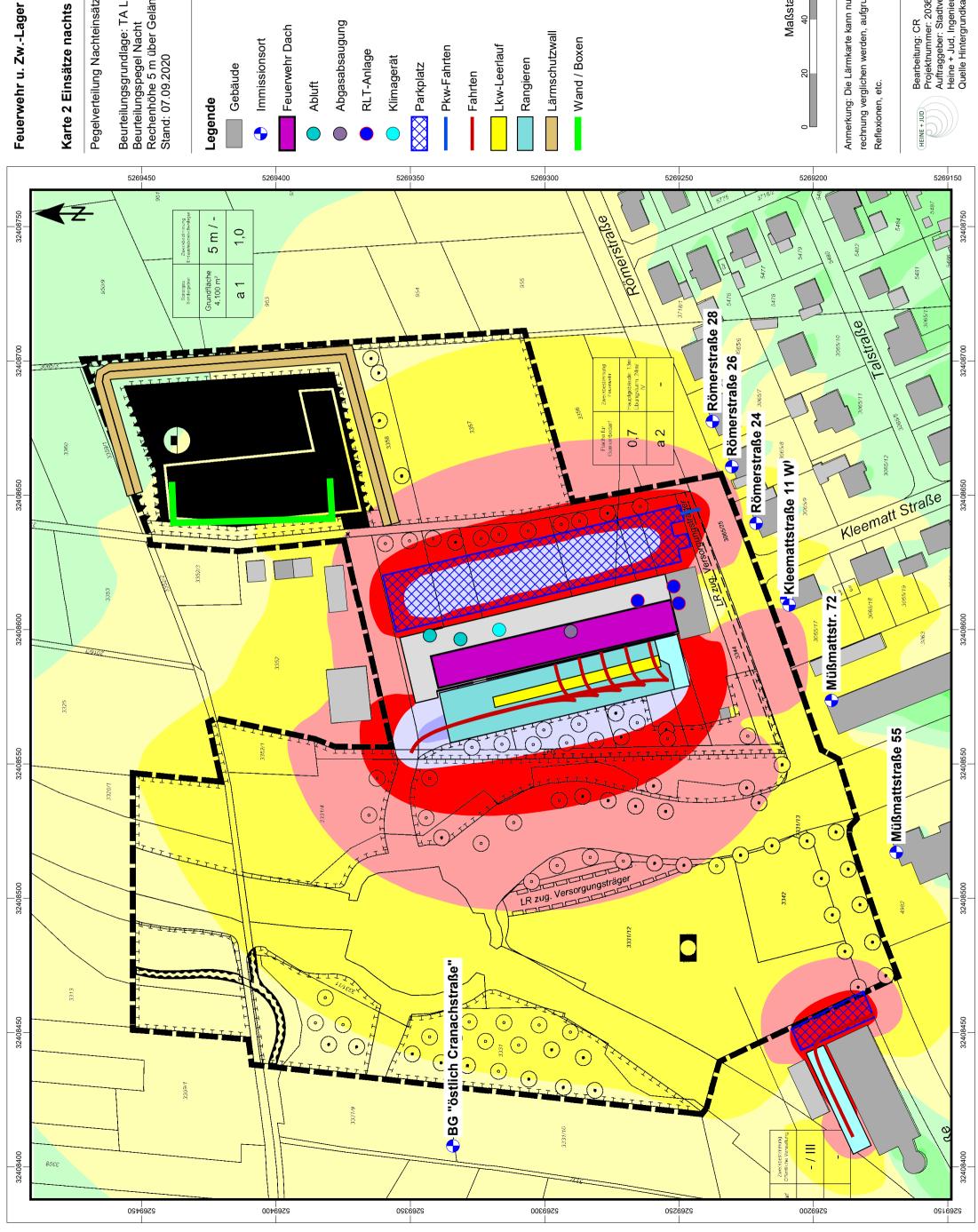

SoundPLAN 8.1

Anlage A38



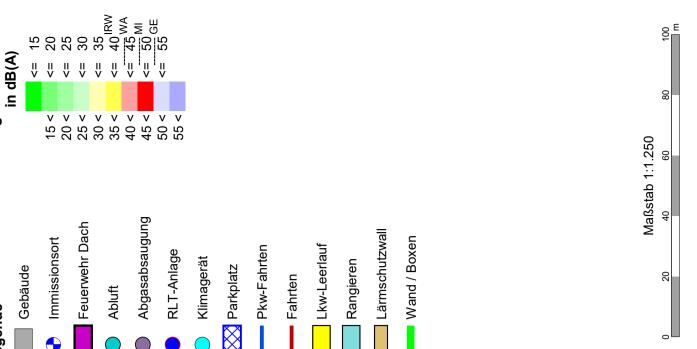
Schallquelle	I oder S	S	ΙŢ	Rw	Lw	M, T	조	ΚŢ	δ	Adiv	Agr	Abar	Aatm	dLrefl	ςη	dLw(LrT)	dLw(LrN)	ZR(LrT)	LrJ	ΓιΝ
						•					•					Tag		Tag	Tag	
	m,m²	٤	dB(A)	ф	dB(A)	dB(A)	g B	dВ	В	dB	дB	В	dВ	dВ	dB(A)	dВ	dB	dB	dB(A)	dB(A)
Römerstraße 28 EG NW RW,T 55 dB(A)		RW,N 40 dB(A)		W,T,m	RW,T,max 85 dB(A)		RW,N,max 60	0 dB(A)	LrT 4	44,7 dB(A)	LrN 38,	3,3 dB(A)	LT,max	63,3 dB(A)	۸) LN,max	ax 55,7 dB(A)				
Ausblasöffnung Abgasabsaugung		94			75,0	75,0	0,0	0,0	0	-50,5	0,3	-4,4	8,0-	0,0	19,6	-6,0	-6,0	1,9	15,5	13,6
Deflektorhaube Abluft 1		132			75,0	75,0	0,0	0,0	0	-53,4	0,3	-0,2	-1,2	0,0	20,4	0,0	0,0	6,1	22,4	20,4
Deflektorhaube Abluft 2		124			75,0	75,0	0,0	0,0	0	-52,9	0,3	-3,4	-1,5	0,0	17,5	0,0	0,0	6,1	19,4	17,5
DRK Fahrten	63	242			71,0	53,0	0,0	0,0	0	-58,7	0,0	-0,7	-1,5	1,8	11,9	-3,0	3,0	1,9	10,8	14,9
DRK Transporter Rangieren	300	256	,		68,2	43,4	0,0	0,0	0	-59,2	0,0	-3,0	-1,5	2,1	9'9	-3,0	3,0	1,9	5,5	9,6
Fahrzeughalle Dach	1090	86	75,0	35	69,2	38,8	0,0	0,0	0	-50,8	6,0	-6,0	-0,5	0,0	13,0	0,6-		0,9	10,0	
Fahrzeughalle Oberlicht 1	2	73	75,0	21	57,8	51,0	0,0	0,0	0	-48,3	-0,2	-6,3	-0,1	0,0	2,9	0.6-		0,9	-0,1	
Fahrzeughalle Oberlicht 2	2	8	75,0	77	8'29	51,0	0,0	0,0	0	-49,1	-0,2	-4,7	-0,1	0,0	3,6	0,6-		0,9	9,0	
Fahrzeughalle Oberlicht 3	2	06	75,0	21	8,73	51,0	0,0	0,0	0	-50,1	-0,3	-4,6	-0,1	0,0	2,7	0,6-		0,9	-0,4	
Fahrzeughalle Oberlicht 4	2	100	75,0	21	8,75	51,0	0,0	0,0	0	-51,0	-0,3	-4,5	-0,5	0,0	1,8	0.6-		0,9	-1,2	
Fahrzeughalle Oberlicht 5	2	11	75,0	77	8'29	51,0	0,0	0,0	0	-51,9	-0,4	-4,3	-0,5	0,0	1,0	0,6-		0,9	-2,0	
Fahrzeughalle Tore tags	353	66	75,0	0	100,5	75,0	0,0	0,0	0	6'09-	4,0	-23,2	-0,4	0,0	26,4	0,6-		0,9	23,4	
Klimaaußengeräte		17			58,0	58,0	0,0	0,0	0	-51,9	0,3	-3,3	4,1-	0,0	1,7	0,0	0,0	1,9	3,6	1,7
Kommunikation Übungen	2230	107			83,0	49,5	3,6	0,0	0	-51,6	0,1	-10,2	-0,5	8,0	21,7	0'6-		0,9	22,3	
Pkw Fahrten	7	8			56,2	47,5	0,0	0,0	0	-41,7	0,1	0,0	-0,3	0,0	14,3	2,7	14,8	0,0	17,1	29,1
RLT Anlage 6		20			75,0	75,0	0,0	0,0	0	-47,8	4,0	-6,0	-0,4	0,1	21,3	0,0	0,0	1,9	23,3	21,3
RLT-Anlage 4		73			75,0	75,0	0,0	0,0	0	-48,2	0,4	-4,5	8,0-	0,0	22,2	0,0	0,0	6,1	24,2	22,2
Übungen Kleingeräte	594	93			100,0	75,3	0,0	0,9	0	-50,3	0,3	-22,7	-1,3	1,2	27,3	-12,0		0,9	27,3	
Übungen Lkw Leerlauf	1597	17			94,0	62,0	0,0	0,0	0	-51,9	-0,2	-20,1	-0,3	0,1	21,6	-15,1		0,9	12,6	
Übungen Rangieren	1597	17			92,8	8,09	0,0	0,0	0	-51,9	-0,1	-20,4	4,0-	0,1	20,2	-3,0		1,9	19,1	
Wärmepumpe		49			0,09	0,09	0,0	0,0	0	-47,1	4,0	-4,3	-0,7	0,0	8,3	0,0	0,0	1,9	10,3	8,3
Werkstatt Übungen	34	141	80,0	0	95,4	80,0	0,0	0,0	0	-53,9	<u>,</u>	-24,8	-2,3	0,0	15,4	0'6-		0,9	12,4	
ZwLager Abkippen	1456	171			89,2	9,75	8,0	0,0	0	-55,6	-0,7	-5,6	6,0-	0,5	56,9	1,1		1,0	36,9	
ZwLager Lkw-Fahrten	11	165			83,4	63,0	0,0	0,0	0	-55,3	-0,2	9'9-	8,0-	8,0	21,3	1,		1,0	23,3	
ZwLager Lkw-Rangieren	2876	169			87,4	52,8	0,0	0,0	0	-55,5	-0,2	-5,8	6,0-	0,4	25,4	1,		1,0	27,5	
ZwLager Radlader	2876	169			107,0	72,4	0,0	0,0	0	-55,5	-0,2	-5,8	-1,1	9,0	44,7	-2,0		0,0	42,7	
ZwLager Radlader-RFW	2876	169			104,0	69,4	0,0	0,0	0	-55,5	2,0	-7,0	-2,4	0,5	40,2	-5,1		0,0	35,2	
DRK Parkplatz	288	228		,	79,0	54,4	0,0	0,0	0	-58,1	-0,1	0,0	-1,5	1,5	20,7	-6,0	-3,0	1,9	16,6	17,7
Parkplatz Übungen	2345	73	\neg	\neg	89,1	55,3	0,0	0,0		-48,3	-0,2	0,0	9,0-	0,3	40,4	-15,1	-3,0	0,0	25,3	37,3

Ergebnisnr.: 4

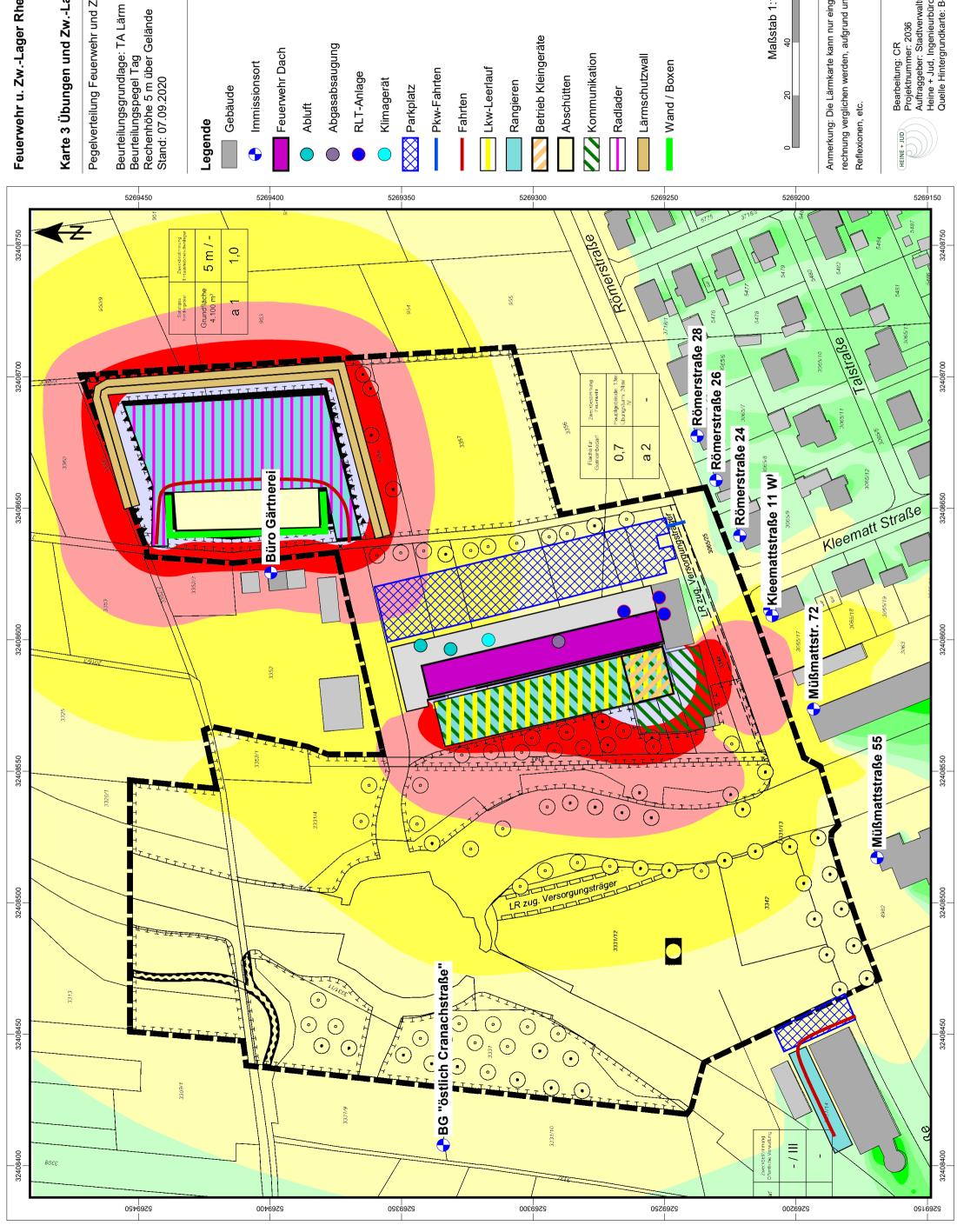


Karte 1 Einsätze und Zw.-Lager tags

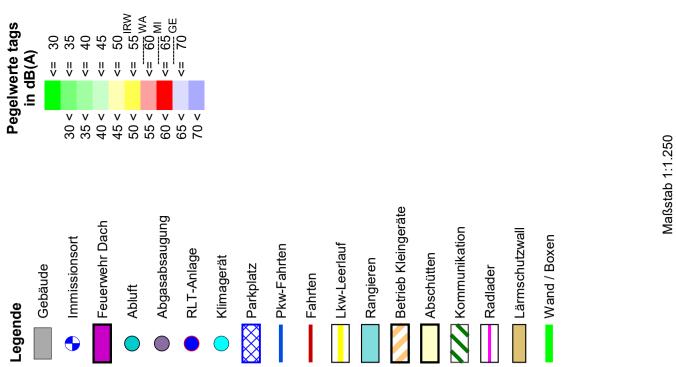
Anmerkung: Die Lärmkarte kann nur eingeschränkt mit der Einzelpunktberechnung verglichen werden, aufgrund unterschiedlicher Rechenhöhen,


Projektnummer: 2036 Auftraggeber: Stadtverwaltung Rheinfelden Heine + Jud, Ingenieurbüro für Umweltakustik Quelle Hintergrundkarte: B-Plan "Feuerwehr Römerstraße"

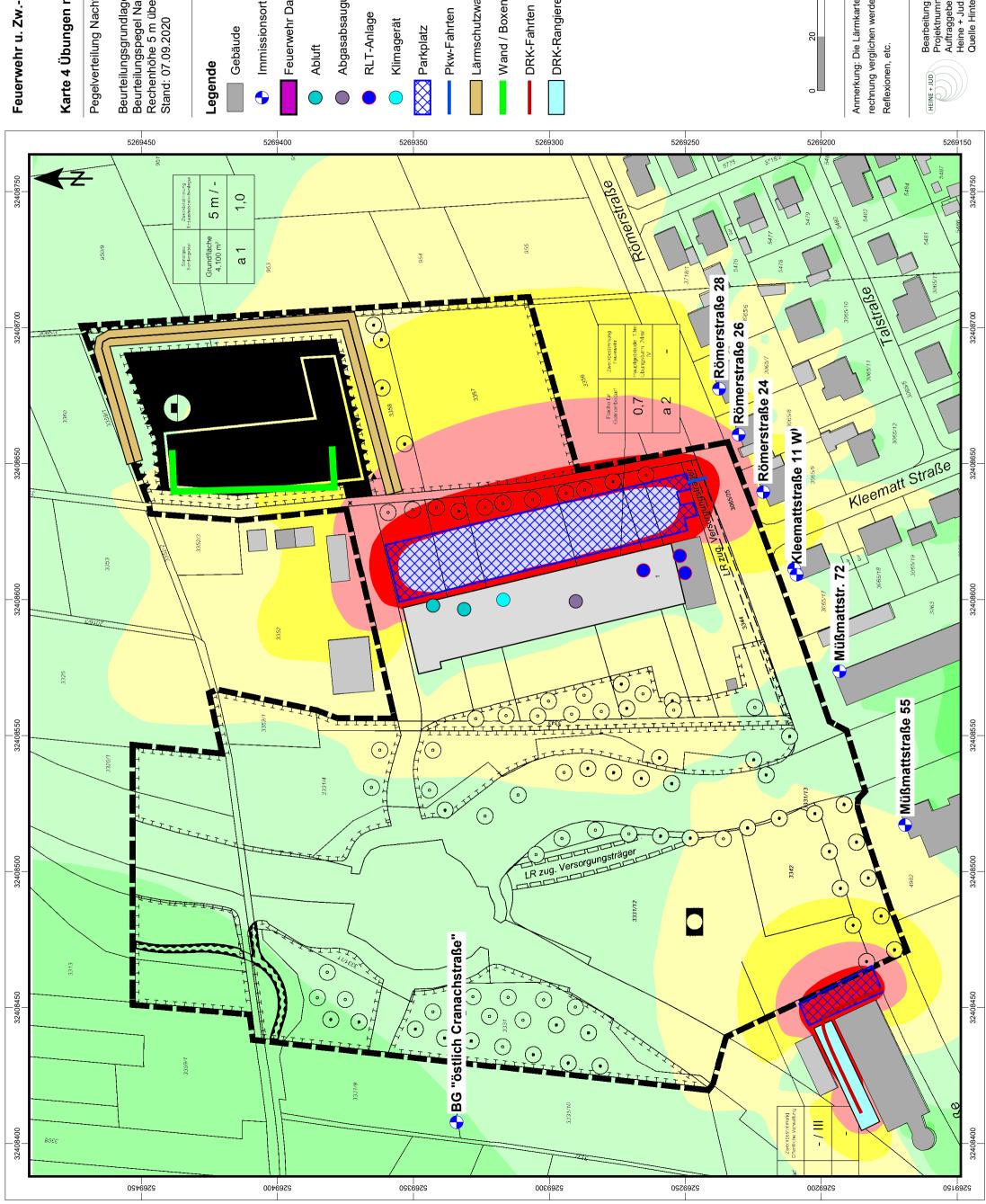
Pegelverteilung Nachteinsätze


Beurteilungsgrundlage: TA Lärm Beurteilungspegel Nacht Rechenhöhe 5 m über Gelände Stand: 07.09.2020

Pegelwerte nachts


Anmerkung: Die Lärmkarte kann nur eingeschränkt mit der Einzelpunktberechnung verglichen werden, aufgrund unterschiedlicher Rechenhöhen,

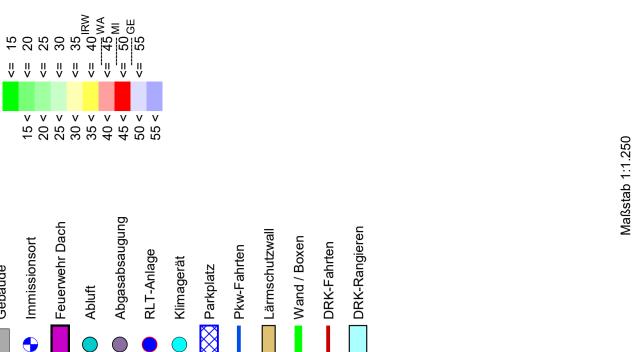
Projektnummer: 2036 Auftraggeber: Stadtverwaltung Rheinfelden Heine + Jud, Ingenieurbüro für Umweltakustik Quelle Hintergrundkarte: B-Plan "Feuerwehr Römerstraße" Bearbeitung: CR


Karte 3 Übungen und Zw.-Lager tags

Pegelverteilung Feuerwehr und Zwischenlager

Anmerkung: Die Lärmkarte kann nur eingeschränkt mit der Einzelpunktberechnung verglichen werden, aufgrund unterschiedlicher Rechenhöhen, 80

Projektnummer: 2036 Auftraggeber: Stadtverwaltung Rheinfelden Heine + Jud, Ingenieurbüro für Umweltakustik Quelle Hintergrundkarte: B-Plan "Feuerwehr Römerstraße"


Karte 4 Übungen nachts

Pegelverteilung Nachteinsätze

Beurteilungsgrundlage: TA Lärm Beurteilungspegel Nacht Rechenhöhe 5 m über Gelände Stand: 07.09.2020

Pegelwerte nachts

in dB(A)

Anmerkung: Die Lärmkarte kann nur eingeschränkt mit der Einzelpunktberechnung verglichen werden, aufgrund unterschiedlicher Rechenhöhen, 8

Projektnummer: 2036 Auftraggeber: Stadtverwaltung Rheinfelden Heine + Jud, Ingenieurbüro für Umweltakustik Quelle Hintergrundkarte: B-Plan "Feuerwehr Römerstraße" Bearbeitung: CR