
# Gemeindespezifischer Bericht

November 2022









# Unternehmensunabhängige Interkommunale Wärmeplanung (UIWP)

Rheinfelden (Baden)



















#### Im Auftrag von:

Landkreis Lörrach

Im Entenbad 11+13

79541 Lörrach

Projektleitung: FB Stabsstelle Klimaschutz, Inga Nietz (bis 2021: FB Umwelt, Dr. Georg Lutz)

### durch das Projektkonsortium:

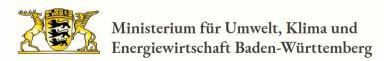
endura kommunal GmbH Emmy-Noether-Str. 2 79110 Freiburg info@endura-kommunal.de

www.endura-kommunal.de

Projektleitung: Rolf Pfeifer

greenventory GmbH Georges-Köhler-Allee 302 79110 Freiburg

<u>info@greenventory.de</u> www.greenventory.de ifok GmbH Berliner Ring 89 64625 Bensheim info@ifok.de


www.ifok.de

#### Mitarbeitende:

endura kommunal: Rolf Pfeifer, Maximilian Schmid, Simon Winiger, Floriane Abedi, Mona Stammer greenventory: Dr. David Fischer, Raymond Branke, Maria Enders

ifok: Dr. Dirk Vetter, Mona Dellbrügge, Sebastian Gütte, Dr. Özgür Yildiz

Dieses Projekt wurde vom Umweltministerium Baden-Württemberg gefördert.



NOVEMBER 2022











# **Inhaltsverzeichnis**

- 1. Einleitung
- 2. Datenerhebung
- 3. Bestandsanalyse
- 4. Potenzialanalyse

Solarthermie - Freifläche

PV – Freifläche

Innerörtliche Potenziale: Aufdach-Solarthermie/PV und industrielle Abwärme

Windenergie

Biomasse

# 5. Szenarien und Eignungsgebiete

Eignungsgebiete Wärmenetze und dezentrale Einzelversorgung

Versorgungsszenario 2040 mit Zwischenziel 2030

CO<sub>2</sub>-Bilanz

Gebiete mit erhöhtem energetischen Sanierungsbedarf

6. Wärmewendestrategrie: Maßnahmenkatalog











# 1. Einleitung

In diesem Bericht werden die zentralen Ergebnisse der landkreisweiten Wärmeplanung für **Rheinfelden (Baden)** dargestellt. Dieses Dokument ist in Verbindung mit dem Gesamtbericht zu sehen, der neben den landkreisweiten Ergebnissen auch vertieft auf den methodischen Ansatz der (interkommunalen) Wärmeplanung eingeht.

Die Wärmeplanung gibt einen **Gesamtüberblick** über die IST-Situation (Bestandsanalyse), über die Potenziale einer klimaneutralen Wärmeversorgung (Potenzialanalyse) und über die Errichtung möglicher Wärmenetze (Eignungsgebiete). Außerdem werden das Szenario der klimaneutralen Wärmeversorgung 2040 und entsprechende Maßnahmen aufgezeigt. **Der nächste Schritt zur Wärmewende sind dann vertiefte Analysen und lokal angepasste Aktionen** – zum Beispiel im Rahmen von geförderten Quartierskonzepten und Sanierungsmanagements.

# 2. Datenerhebung

Für die im nächsten Abschnitt vorgestellten Analysen wurden u.a. die folgenden Daten erhoben und ausgewertet:

- Gebäudescharfe Verbrauchsdaten der Energieversorger (Gas, Wärmenetze, Strom zu Heizzwecken)
- > Kehrbücher der Schornsteinfeger
- > Tabellarische Abfragen zu den kommunalen Gebäuden
- > Angaben der potenziell Abwärme abgebenden Unternehmen

Aus diesen Daten wurde der Wärmebedarf jedes einzelnen Gebäudes bestimmt. Waren keine Verbrauchsangaben vorhanden, so wurde der Wärmebedarf über die Gebäudegeometrie berechnet. Unbeheizte Nebengebäude wie Garagen und Schuppen wurden herausgefiltert.











# 3. Bestandsanalyse

Die folgenden Grafiken zeigen die Bestandsanalyse für Rheinfelden (Baden):

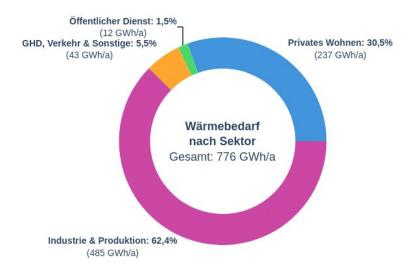



Abbildung 1: Wärmebedarf (in GWh/a) nach Sektoren (gemäß EU-NACE) in Rheinfelden (Baden).

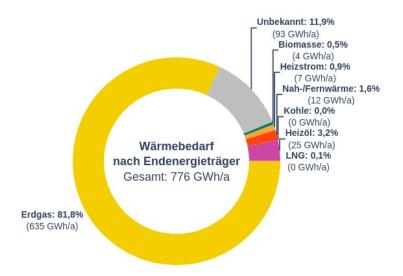



Abbildung 2: Wärmebedarf (in GWh/a) nach Endenergieträgern in Rheinfelden (Baden). Erläuterung zu den "unbekannten" Anteilen siehe unten.

Die Abbildungen 1 und 2 zeigen den Wärmebedarf aufgeschlüsselt nach Sektoren und nach Energieträger. Eine Säulengrafik zur Bestandanalyse nach Sektoren und nach Energieträgern findet sich in Abbildung 16 in Kapitel 5. Die CO<sub>2</sub>-Bilanz ist ebenfalls gemeinsam mit dem Szenario in Kapitel 5 dargestellt.













Abbildung 3: Alter der Heizungen in Rheinfelden (Baden). Die Gebäudeanzahl wurde aus dem verwendeten Kartenmaterial automatisiert ermittelt, Gebäudeteile wurden dabei separat gezählt. Erläuterung zu den "unbekannten" Anteilen siehe unten.

Die "unbekannten" Anteile in den Abbildungen 2 und 3 sind bedingt dadurch, dass in der automatisierten Analyse nicht jedem Gebäude(teil) ein Energieträger zugeordnet werden konnte. Ein "unbekannter" Anteil von 20 bis 40 % ist daher nicht zu vermeiden. Höhere Anteile sind i.d.R. bedingt durch fehlende oder lückenhafte Schornsteinfeger- oder Verbrauchsdaten. Da die Angaben zum Heizungsalter alleinig auf den Schornsteinfegerdaten beruhen, ist hier der Anteil an "unbekannt" i.d.R. noch höherdenn strombasierte Heizungen und Wärmenetzanschlüsse sind in den Schornsteinfegerdaten naturgemäß nicht enthalten.











Abbildung 4: Gebäudetypen (Kategorien nach EU-NACE) in Rheinfelden (Baden). Die Gebäudeanzahl wurde aus dem verwendeten Kartenmaterial automatisiert ermittelt, Gebäudeteile wurden dabei separat gezählt.

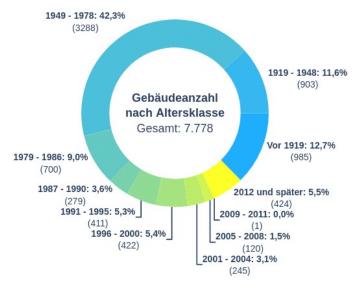



Abbildung 5: Baualter der Gebäude in Rheinfelden (Baden). (Datenquelle: Zensus 2011)











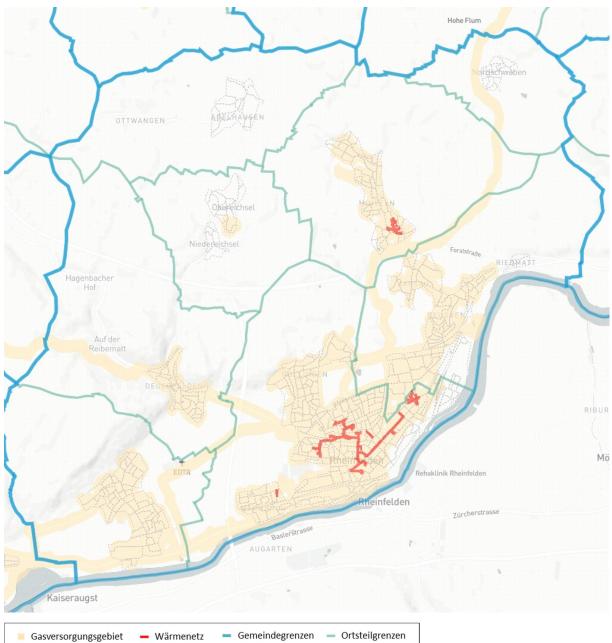



Abbildung 6: Vorhandene Wärme-Infrastruktur in Rheinfelden (Baden).











# 4. Potenzialanalyse

Die Analyse speist sich aus geographischen Daten, Luftbildaufnahmen sowie spezialisierten Informationssystemen (z.B. ISONG für die oberflächennahe Geothermie). Diese Daten wurden mit definierten und wissenschaftlich anerkannten Methoden zur Potenzialausweisung verschnitten und automatisiert berechnet. Dieses Vorgehen lehnt sich an den Leitfaden "Kommunale Wärmeplanung" der Klimaschutz- und Energieagentur Baden-Württemberg (KEA-BW) an.

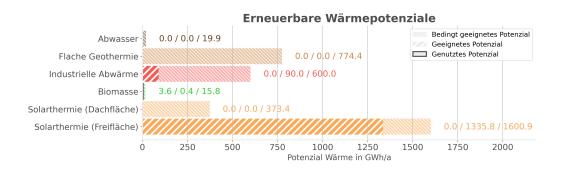
Die hier ausgewiesenen Potenziale wurden nach **technisch-wirtschaftlichen Kriterien** ausgewiesen. Das mehrstufige Ausschlussverfahren wird anhand der Ausweisung der Windpotenziale beispielhaft verdeutlicht:

Für die Windenergie wurden zunächst nur die Flächen herangezogen, auf denen überhaupt ausreichend viel Wind weht, um Windenergieanlagen nach aktuellem technischem Stand sinnvoll zu betreiben (Daten aus dem Windatlas Baden-Württemberg). Anschließend wurden alle Flächen, die gemäß geographischer Rohdaten technisch schwer oder gar nicht erschließbar sind (z. B. Hangneigung größer als 30 Grad), ausgeschlossen. In der Folge wurden dann auf Grundlage der Landesdatenbanken die rechtlichen Restriktionskriterien angewendet, ähnlich dem Vorgehen einer kommunalen Flächennutzungsplanung: So wurden z. B. Naturschutzgebiete oder ausgewiesene Vogelschutzgebiete ausgeschlossen und Mindestabstände zu geschlossenen Wohngebieten, Wohngebäuden, Kur- und Klinikbetrieben, Militäranlagen, Straßen etc. berücksichtigt. Am Ende resultierte eine Flächenkulisse, für die eine Eignung zur Windkraftnutzung ausgewiesen werden kann. Auf diesen Flächen wurden dann nach technischen Kriterien und unter Einhaltung von Mindestabständen Windenergieanlagen des neuesten Typs virtuell platziert. Über die Anzahl der in diesen Flächen möglichen Windenergieanlagen und deren Leistung wurden durch Multiplikation mit den verfügbaren Volllaststunden anhand des dortigen Windangebots die resultierenden erneuerbaren Windstrompotenziale berechnet. Die genauen Kriterienlisten für die Ausweisung der jeweiligen Potenziale sind im übergeordneten Gesamtbericht enthalten.

<u>Wichtig:</u> Bei dieser Potenzialausweisung handelt es sich um eine erste **rein technisch-wirtschaftliche Einschätzung anhand grundsätzlicher Annahmen.** Die kommunalen Potenziale sind im weiteren mit den zuständigen Fachbehörden auf eine grundsätzlich fachliche Umsetzbarkeit hin zu verifizieren. Dies greift einer politischen Entscheidung, ob diese Potenziale genutzt werden, keineswegs vor, soll der Politik jedoch aufzeigen, welche Potenziale überhaupt vorhanden und grundsätzlich erschließbar sind. Eine Reduktion dieser Potenziale kann z.B. von vertieften Untersuchungen im Rahmen einer Projektentwicklung und damit neu verfügbaren Erkenntnissen abhängen, die im Rahmen dieser interkommunalen Wärmeplanung nicht durchführbar sind, oder auch von politischen Entscheidungen.

Bei der Potenzialbestimmung im Rahmen der (inter)kommunalen Wärmeplanung geht es nicht um einzelne Flächen, sondern um die Größenordnungen. Im übergeordneten Gesamtbericht sind detailliertere Beschreibungen der Potenzialermittlungen enthalten.












# Rheinfelden (Baden)



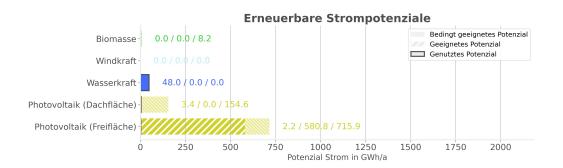





Abbildung 7: Höhe der Potenziale in der Kommune. Die Potenziale schließen die IST-Nutzung mit ein. Ebenso schließt das begingt geeignete Potenzial das geeignete Potenzial mit ein.

#### Erläuterungen zur Nomenklatur:

**Genutztes Potenzial:** Dieses Potenzial wird in in Rheinfelden (Baden) bereits genutzt, z. B. durch installierte PV-, Solarthermie- oder Windenergieanlagen, oder im Fall der Biomasse durch die Holzheizungen.

**Geeignetes Potenzial:** Dieses Potenzial resultiert aus den technisch-wirtschaftlichen Kriterien (s. oben). Im Gegensatz zum bedingt geeigneten Potenzial werden hier auch bereits Kriterien des Natur- und Artenschutzes (z. B. Landschaftsschutz- und FFH-Gebiete) berücksichtigt und entsprechende Flächen ausgeschlossen.

**Bedingt geeignetes Potenzial:** Dieses Potenzial stellt die verfügbare, zusätzliche Energiemenge dar, wenn man Wind- oder PV- und Solarthermie-Anlagen beispielsweise auch in Landschaftsschutz- und FFH-Gebiete stellt.











# Kartografische Darstellungen der Potenzialflächen

Die hier dargestellten Kartenausschnitte zeigen die Bereiche, die anhand der zur Verfügung stehenden Daten automatisiert bestimmt wurden. Dort steht einer Nutzung nach aktuellem Kenntnisstand weder nach technischen noch nach wirtschaftlichen Kriterien etwas entgegen. Das bedeutet, dass auf diesen Flächen die Errichtung von PV-, Solarthermie- oder Windkraftanlagen nach technisch-wirtschaftlichen Kriterien grundsätzlich möglich ist. Auch hier werden die o. g. Begriffe "geeignetes Potenzial" und "bedingt geeignetes Potenzial" wieder angewendet und dargestellt.

#### Solarthermie - Freifläche

Das Potenzial für Solarthermie-Freiflächenanlagen wurde gemäß der PV-Förderkulisse (Stand Juni 2022) auf <u>Seitenrandstreifen</u>, <u>Konversionsflächen und benachteiligte Gebiete</u> beschränkt. Anschließend wurden ungeeignete Flächen ausgeschlossen (z. B. Wald, Hangneigung, Naturschutz, vgl. Kriterienkatalog im übergeordneten Gesamtbericht). Von den so bestimmten Potenzialgebieten wurden kleinere Flächen entfernt (< 500m²), deren Erschließung nicht praktikabel ist.

Die Potenzialflächen für Freiflächen-Solarthermie wurden zusätzlich auf einen Umkreis von 500 m um Wohn- und Gewerbeflächen begrenzt (außerhalb wären die Wärmeverluste für den Transport der Wärme vom Solarthermiefeld zum Wärmeverbraucher in den Siedlungen zu hoch). Innerhalb dieses Radius sind die Potenzialflächen für PV und Solarthermie deckungsgleich.

Im nächsten Schritt wurden auf diesen Flächen Module virtuell platziert (Neigung 20° nach Süden.) Unter Berücksichtigung von Verschattung, Globalstrahlung, Temperatur, Topografie etc. wurden anschließend die erzielbaren Volllaststunden und der Jahresenergieertrag in kWh/a jeder Fläche bestimmt.











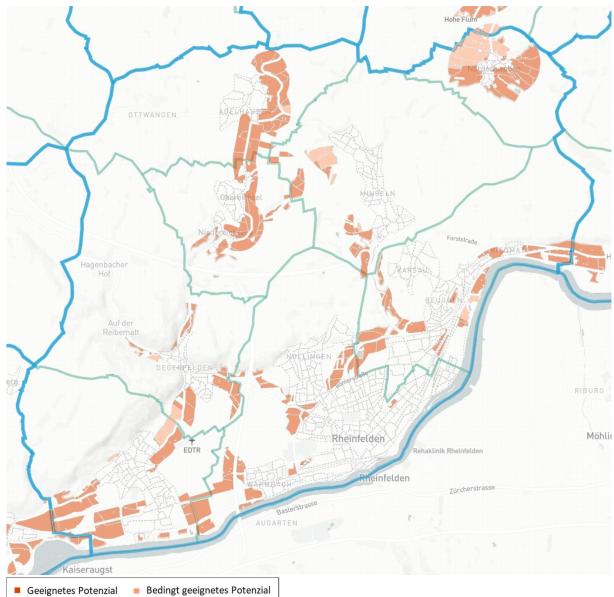



Abbildung 8: Solarthermiepotenzial Freifläche in Rheinfelden (Baden).









#### PV - Freifläche

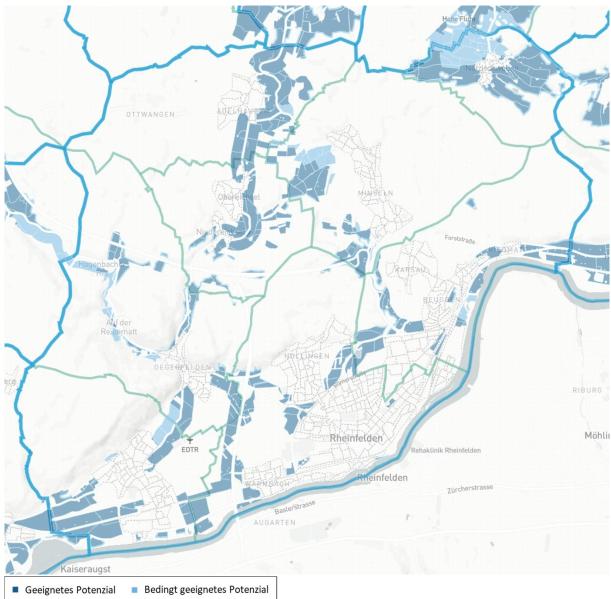



Abbildung 9: Photovoltaikpotenzial Freifläche in Rheinfelden (Baden).

Beim Potenzial für Photovoltaik-Freiflächenanlagen wurde – analog der Ausweisung der Solarthermie-Freiflächen – gemäß der EEG-Förderkulisse (Stand Juni 2022) sich auf Seitenrandstreifen, Konversionsflächen und benachteilige Gebiete beschränkt. Anschließend wurden auch hier ungeeignete Flächen ausgeschlossen (z. B. Wald, Hangneigung, Naturschutz, vgl. Kriterienkatalog im übergeordneten Gesamtbericht). Von den so bestimmten Potenzialgebieten wurden kleinere Flächen entfernt (< 500m²), deren Erschließung nicht praktikabel ist.

Im letzten Schritt wurden auf diesen Flächen virtuell Module platziert (Neigung 20° nach Süden.) Unter Berücksichtigung von Verschattung, Globalstrahlung, Temperatur, Topografie etc. wurden anschließend die erzielbaren Volllaststunden und der Jahresenergieertrag in kWh/a jeder Fläche bestimmt.











#### Innerörtliche Potenziale: Aufdach-Solarthermie/PV und industrielle Abwärme

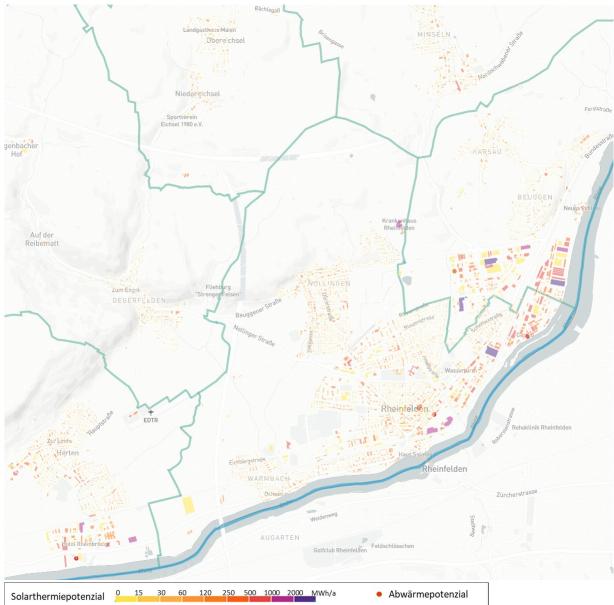



Abbildung 10: Innerörtliche Potenziale: Solarthermie und industrielle Abwärme in Rheinfelden (Baden). (Die PV-Potenziale nutzen die identischen Flächen.) Zur besseren Erkennbarkeit ist ggf. nur ein Ausschnitt dargestellt.

Für die Ausweisung der gebäudebezogenen Solarthermie- und PV-Potenziale (Methodik bei beiden identisch) wurden zunächst die nutzbaren Dachflächen identifiziert (Ausrichtung, Neigung, Auswertung Luftbildaufnahmen). Anschließend wurden Hindernisse (Dachgauben, Schornsteine usw.) identifiziert und von den nutzbaren Flächen subtrahiert. Im nächsten Schritt erfolgte wiederum die virtuelle durchgeführte Modulplatzierung, indem handelsübliche Module entsprechend der Dachform entweder aufgeständert (Ausrichtung Süden, 20° Neigung) oder auf der vorhandenen geneigten Dachfläche modelliert werden.

Im letzten Schritt wurden die Leistungen dieser handelsüblichen Module mit den Wetterdaten des jeweiligen Ortes (Sonnenscheindauer, Einstrahlungsintensität) verschnitten, was in einem durchschnittlichen Jahresertrag und einem Jahreslastgang (Erzeugung über das Jahr hinweg) resultierte. Da unbekannt ist, ob es auf den einzelnen Gebäuden bauliche, statische oder sonstige weitere











Einschränkungen gibt, wurde das Aufdachpotential als bedingt geeignet klassifiziert. Der Abgleich des Solarthermie-Ertrages mit dem Wärmebedarf der Gebäude sowie die Auflösung der Flächenkonkurrenz PV-Solarthermie erfolgte im nächsten Schritt, der Szenarioentwicklung (s.u.).

Industrielle Abwärme: Im Rahmen der Datenerhebung bei den Industrie- und Gewerbebetrieben wurden nur von sehr wenigen Unternehmen im Landkreis quantifizierbare Abwärmemengen übermittelt. Aus einigen Kommunen wurden uns durch einzelne Betriebe mitgeteilt, dass Abwärmepotenziale vorhanden sind, jedoch keine konkreten Abwärme-Mengen. Diese Unternehmen sind im Karten-Tool der interkommunalen Wärmeplanung separat ausgewiesen. Sollte einer Kommune beim industriellen Abwärmepotenzial kein genutztes oder geeignetes Potenzial genannt sein (alle Werte bei 0,0), heißt dies nicht, dass keine Potenziale vorhanden sind. Eine Identifikation und Erschließung derartiger Potenziale erfordert jedoch eine weit tiefergehende Analyse als dies im Rahmen der interkommunalen Wärmeplanung möglich war.

In Rheinfelden (Baden) wurden 13 potenziell abwärmerelevante Unternehmen angeschrieben. Von 10 Unternehmen liegt eine Antwort bzw. ein ausgefüllter Abwärme-Fragebogen vor. Davon haben 4 angegeben, dass in ihrem Unternehmen Abwärme anfällt. Weitere 2 haben auf die Frage mit "unsicher" geantwortet. 6 Unternehmen wäre(n) prinzipiell bereit, Abwärme auszukoppeln. Die Namen der abwärmerelevanten Unternehmen sind in den ortsteilweisen Teilgebietssteckbriefen beim Potenzial "Abwärme lokal" aufgelistet (diese wurden im Juni 2022 an die Kommunen versandt).











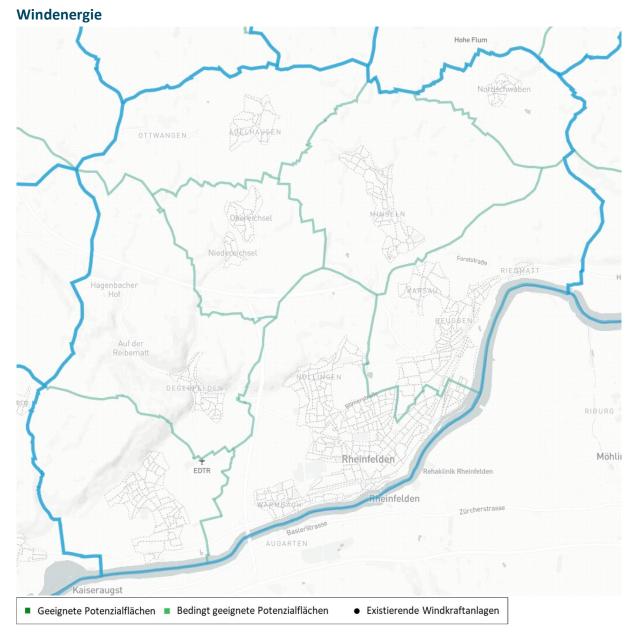



Abbildung 11: Geeignete und bedingt geeignete Windpotenzialflächen sowie bereits existierende Windenergieanlagen.

Bei der Berechnung des Windenergiepotentials folgte die Methodik dem vom LUBW entwickelten Windatlas Baden-Württemberg 2019: Es wurden zunächst nur die Gebiete berücksichtigt, die ausreichend viel Wind bieten, um Windenergieanlagen überhaupt wirtschaftlich betreiben zu können. Anschließend wurden die Gebiete herausgefiltert, die aufgrund von Neigung und Beschaffenheit der Böden den technischen Anforderungen zum Aufstellen von Windkraftanlagen nicht genügen. Ebenso wurden jene Gebiete ausgeschlossen, die als Naturschutzgebiete gelten oder unter die Abstandsregeln fallen (siehe Kriterienkatalog)<sup>3</sup>. Bei den bedingt geeigneten Potenzialflächen wurden Landschaftsschutz- und FFH-Gebiete sowie die Pflegezonen von Biosphären-Reservaten und Wasserschutzgebiete der Kat. III ebenfalls inkludiert, d.h. dort könnten künftig auch Windenergieanlagen stehen. Das geeignete Potenzial weist diese Flächen nicht als Potenzialflächen aus. Auf diesen Flächen wurden dann nach

Seite 16

<sup>&</sup>lt;sup>3</sup> Datenquelle: Kriterienkatalog Wind LUBW 2019, Abstandsempfehlungen Fachagentur Windenergie an Land 2021.









technischen Kriterien und unter Einhaltung von Mindestabständen Windenergieanlagen neuesten Typs virtuell platziert. Über die Anzahl der in diesen Flächen möglichen Windenergieanlagen und deren Leistung wurden durch Multiplikation mit den verfügbaren Volllaststunden anhand des dortigen Windangebots die resultierenden erneuerbaren Windstrompotenziale berechnet. Bereits bestehende Windenergieanlagen wurden berücksichtigt. Das sich durch Repowering ergebende Potenzial wurde in die Gesamtbilanz miteinbezogen.

In Rheinfelden (Baden) ließen sich 0 Windkraftanlagen auf geeigneten Potenzialgebieten sowie 0 weitere auf bedingt geeigneten Potenzialgebieten errichten.

#### **Biomasse**

Die Berechnung der Biomasse-Potenziale basiert im Wesentlichen auf der vom Landkreis 2015 durchgeführten Potenzialstudie "Klimaschutzstrategie Abfallwirtschaft Landkreis Lörrach", ergänzt um weitere lokale Studien (DBU Cremer et al. 2007, Leader 2012) und um Angaben von Experten aus dem Landkreis (Dr. Silke Bienroth, Edgar Biehler, Dr. Daniel Weiß). Aus den dort für den gesamten Landkreis genannten Potenzialsummen wurden durchschnittliche Erträge pro Flächeneinheit gebildet, um so die theoretisch möglichen Gesamtenergie-Erträge aus den in Rheinfelden (Baden) vorhandenen Flächen zu bestimmen. Das bereits genutzte Biomasse Potenzial Wärme ist der durch Holz gedeckte Wärmebedarf der Kommune.

Bei der Berechnung des Haus- und Biomülls wurden die im Landkreis tatsächlich anfallenden Abfallmengen anhand der Einwohnerzahlen auf die Kommunen verteilt. Der Haus- und Biomüll wird derzeit zwar außerhalb des Landkreises verwertet, steht als Energieträger dem Landkreis jedoch grundsätzlich zur Verfügung, wenn die politischen Entscheidungen für eine energetische Verwertung getroffen werden würde.











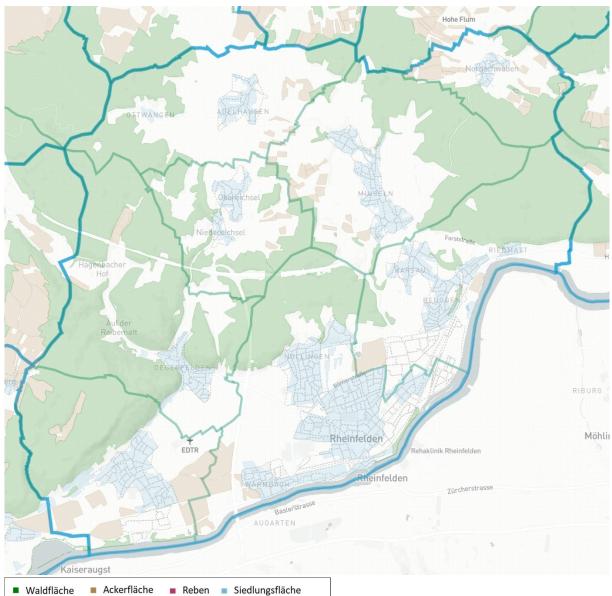



Abbildung 12: Biomasse-Potenzialflächen in Rheinfelden (Baden).









# 5. Szenarien und Eignungsgebiete

Für die Entwicklung des Wärmeverbrauchs bis 2040 wurden gemäß dem Leitfaden Kommunale Wärmeplanung BW die folgenden **Reduktionsfaktoren** angenommen:

- Wohngebäude: Einsparung je nach Baualtersklasse, siehe übergeordneter Bericht. Für Rheinfelden (Baden) ergibt sich somit eine Einsparung von 25 % für den Wohnsektor.
- Gewerbe, Handel und Dienstleistung (GHD): Einsparung 43 %
- › Industrie & Produktion: Einsparung 36 %
- Öffentliche Gebäude: Einsparung 16 %

In Summe wurde für Rheinfelden (Baden) eine Einsparung von 33 % des Wärmebedarfs bis 2040 angenommen.

Auf Basis der beschriebenen Verbrauchsreduktionen und den sich daraus ergebenden Verbrauchsszenarien für die Jahre 2030 und 2040 wurden **Eignungsgebiete** für Wärmenetze bzw. für die dezentrale Einzelversorgung identifiziert und ausgewiesen.

Die wesentlichen Kriterien für die Eignung eines Gebietes für ein Wärmenetz sind wie folgt:

- > Wärmedichte je ha [MWh/ha\*a]
- > Wärmeliniendichte (d.h. Wärmedichte entlang der Straßen) [kWh/m\*a]
- > Vorhandene Ankergebäude (Keimzellen für Wärmenetze, i.d.R. öffentliche oder institutionelle Gebäude mit hohem Wärmebedarf)
- > Bebauungsstruktur und -dichte, Denkmalschutz
- › Mögliche Wärmequellen
- > Typische Ausbaubarrieren für Wärmenetze (z.B. Gewässer, Bahnlinien, stark befahrene Straßen oder deutliche Höhenunterschiede)
- › Bestehende Wärmenetze (bzw. Planungen)

Die Eignungsgebiete für Wärmenetz sind in Abbildung 13 dargestellt. Alle Gebiete außerhalb der Wärmenetz-Eignungsgebiete sind folglich Eignungsgebiete für die dezentrale Einzelversorgung. Anhand dieser Karten können die Bereiche fokussiert werden, in denen die Errichtung eines Wärmenetzes sinnvoll ist und diese Gebiete genauer untersuchen.

Aus den Verbrauchsszenarien und der Einteilung in Eignungsgebiete ergibt sich für Rheinfelden (Baden) folgende Aufteilung des Wärmebedarfs nach Eignungsgebiet-Typen:

Tabelle 1: Wärmebedarf 2020-2040 in Rheinfelden (Baden), aufgeteilt nach Eignungsgebieten

| Wärmebedarf in MWh/a | Gesamt  | In Wärmenetz-<br>Eignungsgebieten | In Einzelversorgungs-<br>Gebieten |
|----------------------|---------|-----------------------------------|-----------------------------------|
| 2020                 | 770.148 | 271.549                           | 498.599                           |
| 2030                 | 644.799 | 226.529                           | 418.270                           |
| 2040                 | 519.450 | 181.509                           | 337.941                           |









# Eignungsgebiete Wärmenetze und dezentrale Einzelversorgung

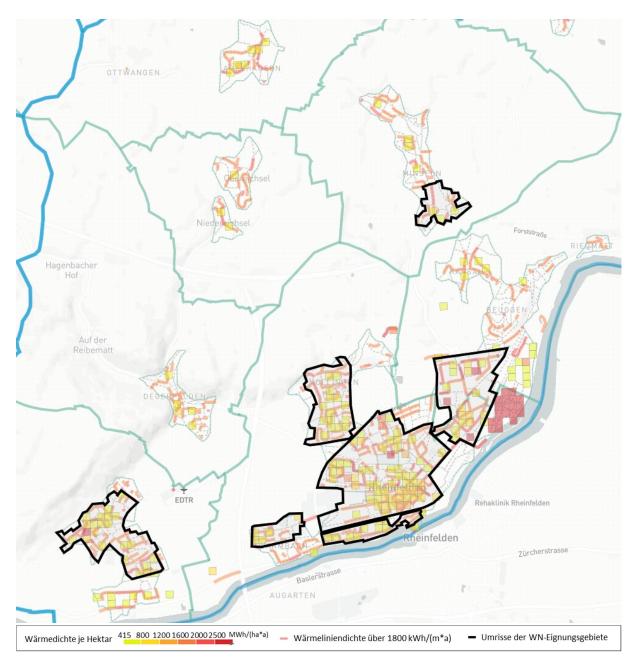



Abbildung 13: Gebiete mit hoher Wärmedichte (ab 415 MWh/ha, Jahr 2020) und Wärmenetz-Eignungsgebiete. Die hier dargestellte Wärmedichte stellt die Summe des gesamten Wärmeverbrauchs aller in einem Hektar (100 x 100 m) liegenden Gebäude dar. Alle Gebiete außerhalb der Wärmenetz-Eignungsgebiete sind Eignungsgebiete für die dezentrale Einzelversorgung.











#### Versorgungsszenario 2040 mit Zwischenziel 2030

Basierend auf den angenommenen Verbrauchsreduktionen (s.o.) wurde für 2040 ein Versorgungszenario entwickelt, bei dem die Wärmeversorgung gänzlich ohne den Einsatz von fossilen Energieträgern erfolgt. Die Grundlage hierfür bilden mehrere deutschlandweite Szenario-Studien. Zusätzlich wurden KEA-BW und das UM BW in den Prozess miteinbezogen (siehe übergeordneter Gesamtbericht).

Da der Großteil, der im Landkreis Lörrach verfügbaren Biomasse für die Hochtemperaturprozesse der Großindustrie in Grenzach-Wyhlen und Rheinfelden benötigt wird, und Wasserstoff als stromintensiver und hochwertiger Energieträger auch in anderen Bereichen benötigt wird, wurden diese beiden Energieträger im Szenario eher zurückhaltend eingesetzt.

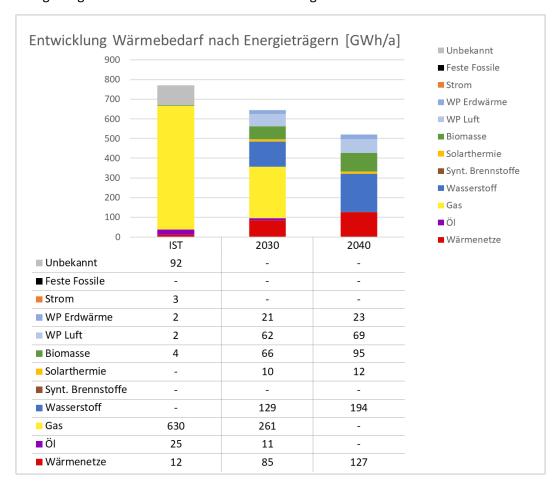



Abbildung 14: Entwicklung des Wärmebedarfs und eingesetze Energieträger in Rheinfelden (Baden): IST, 2030, 2040. Die angesetzten Reduktionsfaktoren sind im vorigen Kapitel erläutert.

In den WÄRMENETZ-EIGNUNGSGEBIETEN wurde für 2040 ein Anschlussgrad von 80 % des Wärmebedarfs an die Wärmenetze angenommen. Über die Abwärme-Ringleitung würden alle daran angeschlossenen Gemeinden mit einem Energiemix von rund 65 % Abwärme und rund 20 % Wärme aus tiefer Geothermie versorgt werden. Die restlichen 15 % würden über Solarthermie, Gewässer-Wärmepumpen am Rhein, Wasserstoff und Biomasse abgedeckt werden. Für die verbleibenden 20 % der Gebäude, die sich innerhalb der Wärmenetz-Eignungsgebiete dezentral versorgen, gilt der gleiche Energiemix wie für die Gebäude in den Einzelversorgungsgebieten. Anmerkung: Für den Sektor Produktion wurde aufgrund der meist höheren benötigten Temperaturen ein geringerer Anschlussgrad von 50 % angesetzt.











In den EINZELVERSORGUNGSGEBIETEN sollen sich die Gebäude 2040 überwiegend über Wärmepumpen (80 %) versorgen. Solarthermie soll wo möglich eingesetzt werden (10 %), Biomasse hingegen nur zur Spitzenlastdeckung im Winter genutzt werden (10 %). Für den Sektor Produktion wurden aufgrund des Hochtemperaturbedarfs der Großindustrie 30 % Biomasse und 70 % Wasserstoff angesetzt.

Für das Zwischenziel 2030 wurde angenommen, dass die Ringleitung nur im Bereich Rheinfelden bis Grenzach entsteht und die Geothermiebohrungen noch nicht in Betrieb sind. Somit wird 2030 ein höherer Anteil an Abwärme direkt in Rheinfelden genutzt: 50 % Hochtemperatur- und 30 % Niedertemperatur-Abwärme. Die restlichen 20 % werden 2030 über Biomasse und Erdgas gedeckt (v.a. auch im Wärmenetz Minseln).

Abbildung 14 zeigt zusammenfassend die Verteilung der Energieträger 2020, 2030 und 2040 für Rheinfelden (Baden). In Abbildung 15 ist die Energieerzeugung für die Wärmenetze grafisch dargestellt.

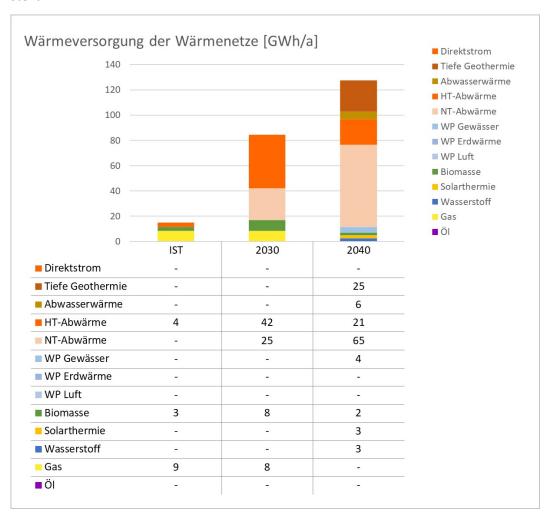



Abbildung 15: Eingesetzte Energieträger zur Wärmeversorgung der Wärmenetze in Rheinfelden (Baden): IST, 2030, 2040.











# Wärmebedarf nach Sektoren und Energieträgern

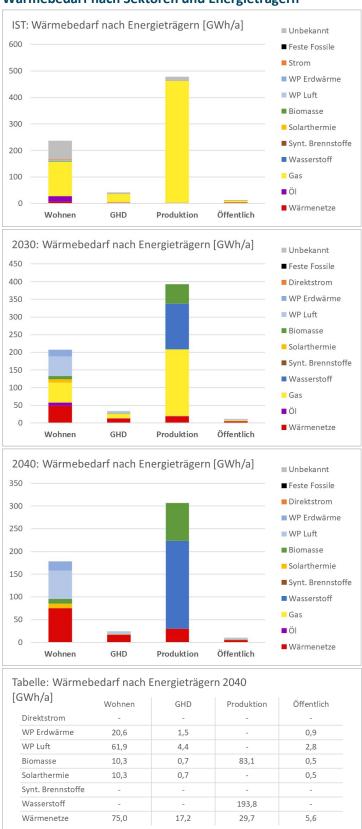



Abbildung 16: Wärmebedarf nach Energieträgern und nach Sektoren in Rheinfelden (Baden) für den IST-Zustand, sowie für das Zwischenszenario 2030 und für das Zielszenario 2040.











#### Strombedarf für Wärmeerzeugung 2040

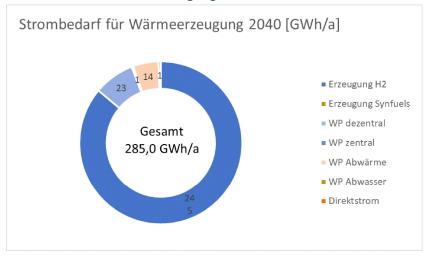



Abbildung 17: Strombedarf für Wärmeerzeugung 2040 in Rheinfelden (Baden).

Abbildung 17 zeigt den Strombedarf, der für die Wärmeerzeugung in Rheinfelden (Baden) benötigt wird. Um diesen bilanziell zu decken benötigt es beispielsweise 23,8 moderne Windkraftanlagen oder 320 ha PV-Freiflächenanlagen.

#### CO<sub>2</sub>-Bilanz

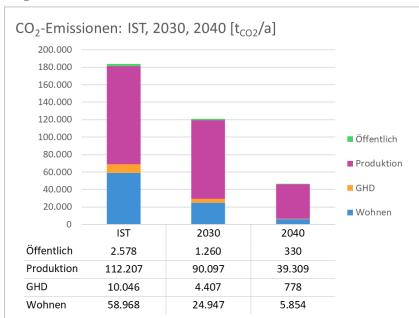



Abbildung 18: CO<sub>2</sub>-Bilanzen für 2020, 2030 und 2040 für Rheinfelden (Baden).

Abbildung 18 zeigt die CO<sub>2</sub>-Bilanzen für 2020, 2030 und 2040. Da die CO<sub>2</sub>-Faktoren für Biomasse, Solarthermie, Strom u.a. auch 2040 nicht null sind (gemäß KEA-BW Technikkatalog) fallen auch für die Wärmeerzeugung 2040 noch Treibhausgasemissionen an. Dies ist laut KEA-BW mit dem Klimaschutzgesetz vereinbar. Gegenüber dem IST-Zustand sind die Treibhausgasemissionen der Wärmeerzeugung 2040 um 75 % geringer.











# Gebiete mit erhöhtem energetischen Sanierungsbedarf

Damit die oben beschriebenen Reduktionsziele bezüglich des Wärmebedarfs im Zielszenario erreicht werden, sind umfangreiche energetische Sanierungsmaßnahmen im Gebäudebestand unerlässlich.

Gebiete mit erhöhtem energetischen Sanierungsbedarf werden insbesondere durch folgende Kriterien identifiziert:

- Hoher spezifischer Wärmebedarf [kWh/m²\*a], insbesondere Gebäude mit mehr als 100 kWh/m²\*a
- > Ältere Baualtersklassen, insbesondere vor der 1. Wärmeschutzverordnung 1979 und Baualtersklasse vor EnEV 2002
- Hohes Alter der Heizanlagen

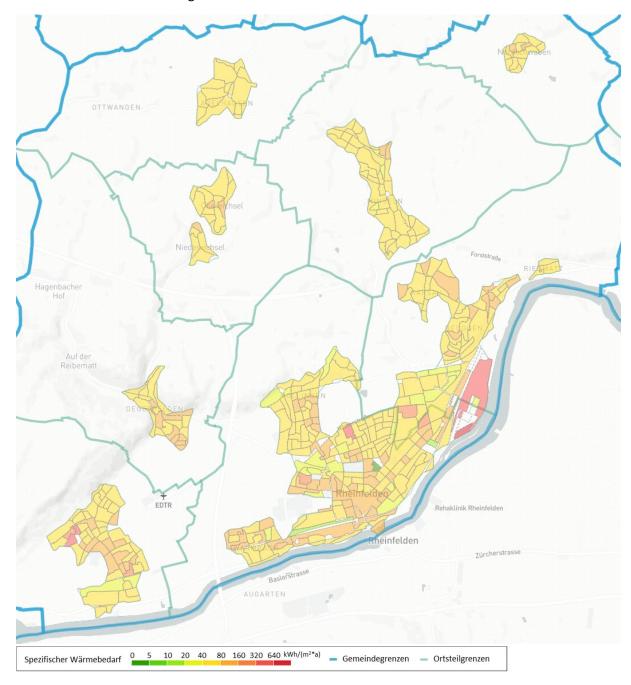



Abbildung 19: Gebiete nach spezifischem Wärmebedarf in Rheinfelden (Baden).











# 6. Wärmewendestrategie mit Maßnahmenkatalog

Die Wärmewendestrategie für Rheinfelden (Baden) besteht darin, den Transformationspfad mit Zwischenziel 2030 und Zielszenario 2040 zeitnah und konsequent einzuschlagen. Gemeinsam mit der Stadtverwaltung und den wesentlichen Akteuren in Rheinfelden (Baden) wurden die folgenden fünf vordringlichen Maßnahmen identifiziert:

#### 1) Untersuchung Abwärmepotenzial

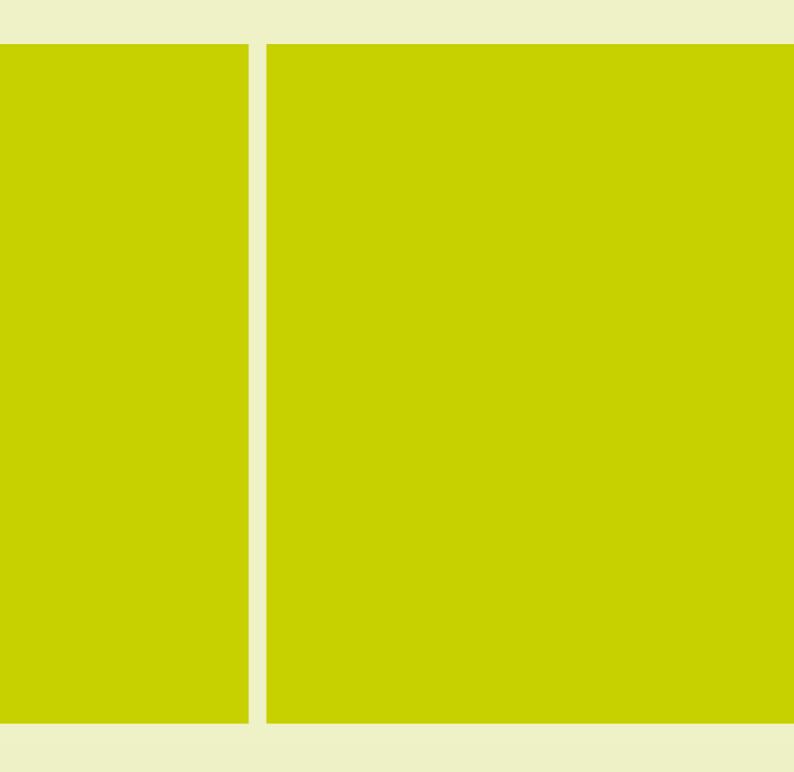
Vertiefte Analyse der im Stadtgebiet weiteren, vorhandenen Abwärmepotenziale (außerhalb Evonik) zur Nutzung und Erschließung dieser Potenziale für die Wärmeversorgung im Landkreis (s. auch Maßnahme Nr. 2) über Wärmenetze.

#### 2) Initiierung und Unterstützung der Projektierung einer Abwärmetransportleitung

Initiierung und Unterstützung der Projektierung einer Abwärmetransportleitung zur Erschließung und dem Transport großer Abwärmemengen aus Rheinfelden in die großen Wärmesenken nach Lörrach, Weil am Rhein und ggfs. ins große Wiesental gemeinsam mit anderen Kommunen des Landkreises Lörrach, sowie dem Landkreis selbst.

3) Erweiterung, Nachverdichtung und Sanierung (Dekarbonisierung) der bestehenden Wärmenetze

Erweiterung und künftige Sanierung (Dekarbonisierung) der vorhandenen Wärmenetze in Rheinfelden.


#### 4) Sanierungsoffensive Gebäudeenergieeffizienz

Unterstützung und Initiierung von Maßnahmen, um die energetische Gebäudesanierung in Rheinfelden voranzutreiben. Hierzu zählen z.B. intensivierte Kommunikations- und Beratungsmaßnahmen über die Energieagentur des Landkreises und die priorisierte Ausweisung künftiger Sanierungsgebiete (gemäß kommunaler Wärmeplanung).

#### 5) Dachnutzung (PV)

Intensivierung von Kommunikationsmaßnahmen bei privaten und gewerblichen Gebäudeeigentümern zur Installation von PV-Dachanlagen.







greenventory

ifok.

A CADMUS COMPANY

endura kommunal GmbH Emmy-Noether-Str. 2 79110 Freiburg im Breisgau

info@endura-kommunal.de www.endura-kommunal.de

greenventory GmbH Georges-Köhler-Allee 79110 Freiburg

info@greenventory.de www.greenventory.de ifok GmbH Berliner Ring 89 64625 Bensheim

info@ifok.de www.ifok.de

